• Title/Summary/Keyword: 베어링 마찰

Search Result 162, Processing Time 0.026 seconds

Effects of Angular Acceleration on the Friction and Wear Characteristics of Gas Foil Thrust Bearings (회전각가속도가 가스 포일 스러스트 베어링의 마찰 및 마모 특성에 미치는 영향)

  • Sung Ho Hwang;Dae Yeon Kim;Tae Ho Kim
    • Tribology and Lubricants
    • /
    • v.39 no.5
    • /
    • pp.203-211
    • /
    • 2023
  • This study experimentally investigates the effects of angular acceleration on the friction and wear performances of a gas foil thrust bearing (GFTB) using a typical GFTB with six pads. The outer radius of the bearing is 31.5 mm, the total bearing area is 2,041 mm2 , and the bump foil and incline (ramp) height are both 500 ㎛. The newly developed GFTB test rig for measuring the friction torque and coefficient measures the axial load, drag torque, lift-off speed, and touch-down speed. The experiment is conducted for angular accelerations of 78.5, 314.2, and 328.3 rad/s2 at axial loads of 5, 10, and 15 N, respectively. The test shows that the start-up friction coefficient increases with increasing axial load at the same angular acceleration, and the friction coefficient decreases with increasing angular acceleration under the same axial load. As the angular acceleration increases, the lift-off speed at the motor start-up increases, and the touch-down speed at the motor stop decreases. The wear distance of the GFTB for a single on/off cycle increases with increasing axial load at the same angular acceleration and decreases nonlinearly with increasing angular acceleration under the same axial load. The test results suggest that adjusting the rotational angular acceleration helps reduce bearing friction and wear.

Development of Friction Loss Measurement Device at Low Speed of Turbocharger in a Passenger Vehicle (승용차용 터보과급기의 저속 영역 마찰 손실 측정 장치 개발)

  • Chung, Jin Eun;Lee, Sang Woon;Jeon, Se Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.585-591
    • /
    • 2017
  • Turbocharging is widely used in diesel and gasoline engines as an effective way to reduce fuel consumption. But turbochargers have turbo-lag due to mechanical friction losses. Bearing friction losses are a major cause of mechanical friction losses and are particularly intensified in the lower speed range of the engine. Current turbochargers mostly use oil bearings (two journal bearings and one thrust bearing). In this study, we focus on the bearing friction in the lower speed range. Experimental equipment was made using a drive motor, load cell, magnetic coupling, and oil control system. We measured the friction losses of the turbocharger while considering the influence of the rotation speed, oil temperature, and pressure. The friction power losses increased exponentially when the turbocharger speed increased.

A Study on the Contact Force of Rubber Seals for Ball Bearings (볼 베어링용 고무시일의 접촉력 해석에 관한 연구)

  • 김청균;전인기;최인혁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2261-2267
    • /
    • 1992
  • The equations are derived for the evaluation of the axial contact force. The contact forces for rubber seals are analyzed as a function of the ratio of real contact length, the thickness of seal lip, the inclined angle of seal lip, and the interference between the edge of seal lip and the rotating inner ring. The design data for rubber seals are presented in terms of the ratio of real contact length, initial inclined lip angle, lip thickness and the interference. The calculated results show that the deflected interference and the circumferential stress cause considerable change of contcat forces for the low sealed pressure.

A Study on the Load Carrying Capacity and Equivalence Friction Coefficient of a Textured Plane Bearing with Semi-spherical Dimples and Semi-ellipsoidal Dimples (반구형 및 반타원형으로 텍스처링된 평면 베어링의 부하지지능력과 등가마찰계수에 대한 해석)

  • Lee, Soo-Young;Kim, Pil-Kee;Seok, Jong-Hyuk;Seok, Jong-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.741-746
    • /
    • 2012
  • The increase of energetic efficiency in plane bearing is getting more important in the transfer mechanism of semi-conductor and display panel manufacturing processes. To accomplish this objective, the technique of surface texturing on bearing surface has recently emerged as one of the most effective candidates. In this study, the effects of various pattern parameters on two bearing performance indices(load carrying capacity and effective friction coefficient) are investigated through a semi-analytic method, i.e., the 2-dimensional Reynolds equation incorporated into the finite difference scheme. Here, cavitation effect is also taken into account by employing an appropriate numerical scheme. In this study, the patterns in the textured surface are composed of a series of semi-spheres or semi-ellipsoids in shape. The effects of their size and number density on the performance indices are examined through the performance of various numerical experiments. Also, the effects of the anisotropy of the semi-ellipsoidal pattern on the bearing's lubrication characteristics are investigated and discussed.

A study on the development of thin-walled metal bearing for the large-sized slow speed diesel engines. (대형저속 디젤엔진용 박판형 메탈 베어링의 국산화 개발에 관한 연구)

  • 김영주;조문제
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.4
    • /
    • pp.61-71
    • /
    • 1995
  • Nowadays the thin-walled metal bearing, which is made seperately from the bearing housing and has the ratio of wall thickness/bearing diameter being less than 1/30, are used in many newly developed large-sized slow speed diesel engines for the purpose of upgarding lubication performance and easy maintenance according to the trends of increasing output per cylinder and lowering engine speed. The type of this bearing has been used generally in many small-sized high speed engines applied for automobile, high speed craft and industrial power generation systems since 1950s. But the tranditional thick-walled bearings, whice are linned white metal on the bearing housing directly, have been installed on the large and slow speed engines until 1990s due to the easy manufacturing procedures. In this study we have calculated optimum dimensions of the metal bearing, fabricated special zigs for crush measurement, model test machine, 2 sets of specimens.(crosshead pin bearing, $\phi$818*552*20mm) for B & W 6S70MC(20, 940*88rpm), and evaluated metal constact phenomena of white metal, its friction coefficient, temparature rise through the model test and field performance test.

  • PDF

Abnormal High Vibration by the Accumulated Oil Carbide at the Exhaust Casing Bearing Air Seal of a Gas Turbine (가스터빈 EXHAUST 케이싱 베어링 AIR SEAL에서 오일 탄화물 축적에 의한 이상 진동)

  • Kim, Dong Kwan;Park, Sangho;Koo, Jae Raeyang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.464-469
    • /
    • 2012
  • In the electric power plant, the shaft vibration is one of the very important point for successful long-term operation, because the high reliability unit needs stable rotor dynamic system. However, in the one combined cycle power plant, the abnormal high level shaft vibration analyzed 1 X on the journal bearing has been several times suddenly tripped of Gas turbine due to the accumulated oil carbide. This paper describes how to countermeasure the abnormal shaft vibration in the journal bearing of Gas turbine exhaust bearing in the field.

  • PDF

An Experimental Study on Roll-Damping Characteristics of a Finned Spinning Projectile (회전발사체 미익형상 롤댐핑 특성에 관한 실험연구)

  • Oh, Se-Yoon;Lee, Do-Kwan;Kim, Sung-Cheol;Kim, Sang-Ho;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.10
    • /
    • pp.894-900
    • /
    • 2012
  • The purpose of this research is to investigate the dynamic roll-damping characteristics of a spin-stabilized projectile in wind-tunnel testing. In the present work, the high-speed wind-tunnel tests for the roll-damping measurements were conducted on a finned spin-stabilized projectile model in the Agency for Defense Development's Trisonic Wind Tunnel at spin rates about 8,000 rpm. The test Mach numbers ranged from 0.6 to 0.9, and the angles of attack ranged from 0 to +15 deg. The evaluation of the bearing friction parameter was also conducted to eliminate the tare damping moment from the aerodynamic damping moment.

Seismic Performance Evaluation of Cone-type Friction Pendulum Bearing System Using Shaking Table Test (진동대실험을 통한 원추형 마찰진자베어링의 내진성능 평가)

  • Jeon, Bub-Gyu;Chang, Sung-Jin;Kim, Nam-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.389-394
    • /
    • 2011
  • Existing FPS(Friction Pendulum System) is isolation system which is possible to isolate structures by pendulum characteristic from ground vibration. Structural natural frequency could be decided by designing the radius of curvature of FPS. Thus, response vibration could be reduced by changing natural frequency of structures from FPS. But effective periods of recorded seismic wave were various and estimation of earthquake characteristic could be difficult. If effective periods of seismic wave correspond to natural frequency of structures with FPS, resonance can be occurred. Therefore, CFPBS(Cone-type Friction Pendulum Bearing System) was developed for controlling the response acceleration and displacement by the slope of friction surfaces. Structural natural frequency with CFPBS can be changed according to position of ball on the friction surface which was designed cone-type. Therefore, Divergence of response could be controlled by CFPBS which had constantly changing natural frequency with low modal participation factor in wide-range. In this study, Seismic performance of CFPBS was evaluated by numerical analysis and shaking table test.

  • PDF

Seismic Performance Evaluation of Cone-type Friction Pendulum Bearing System Using Shaking Table Test (진동대실험을 통한 원추형 마찰진자베어링의 내진성능 평가)

  • Jeon, Bub-Gyu;Chang, Sung-Jin;Kim, Nam-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.7
    • /
    • pp.599-608
    • /
    • 2011
  • FPS(friction pendulum system) is an isolation system which is possible to isolate structures from earthquake by pendulum characteristic. Natural frequencies of the structures could be determined by designing the radius of curvature of FPS. Thus, response vibration could be reduced by changing natural frequency of structures from FPS. But effective periods of recorded seismic wave were various and estimation of earthquake characteristic could be difficult. If effective periods of seismic wave correspond to natural frequency of structures with FPS, resonance can be occurred. Therefore, CFPBS(cone-type friction pendulum bearing system) was developed for controlling the acceleration and displacement of structure by the slope of friction surfaces. Structural natural frequency with CFPBS can be changed according to position of ball on the friction surface which was designed cone-type. Therefore, superstructures on CFPBS could be isolated from earthquake. In this study, seismic performance of CFPBS was evaluated by numerical analysis and shaking table test.

Ripple Compensation of Air Bearing Stage upon Gantry Control of Yaw motion (요 모션 갠트리 제어 시 공기베어링 스테이지의 리플 보상)

  • Ahn, Dahoon;Lee, Hakjun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.554-560
    • /
    • 2020
  • In the manufacturing process of flat panel displays, a high-precision planar motion stage is used to position a specimen. Stages of this type typically use frictionless linear motors and air bearings, and laser interferometers. Real-time dynamic correction of the yaw motion error is very important because the inevitable yaw motion error of the stage means a change in the specimen orientation. Gantry control is generally used to compensate for yaw motion errors. Flexure units that allow rotational motion are applied to the stage to apply this method to a stage using an air-bearing guide. This paper proposes a method to improve the constant speed motion performance of a H-type XY stage equipped with air bearing and flexure units. When applying the gantry control to the stage, including the flexure units, the cause of the mutual ripple generated from the linear motors is analyzed, and adaptive learning control is proposed to compensate for the mutual ripple. A simulation was performed to verify the proposed method. The speed ripple was reduced to approximately the 22 % level. The ripple reduction was verified by simulating the stage state where yaw motion error occurs.