Proceedings of the Korean Statistical Society Conference
/
2001.11a
/
pp.163-167
/
2001
데이터 마이닝에서 분석의 대상으로 하는 대용량 자료에는 연속형 자료와 범주형 자료가 모두 포함된다. 전통적인 군집분석은 연속형 자료를 대상으로 하는 방법들이다. 본 연구에서는 범주형 자료를 대상으로 하는 군집분석방법인 K-모드 알고리즘과 락(ROCK) 알고리즘을 비교${\cdot}$분석하였다. 그리고 두 알고리즘이 갖는 방법론적인 단점을 보안하여 군집의 효과를 높일 수 있는 개선 방안을 제안하였다.
본 논문의 목적은 인터넷에서 범주형 자료분석에 대한 전문적인 지식이 없는 일반 분석자들에게 보다 쉽고, 간편하게 다룰 수 있는 범주형 자료 분석 시스템을 제공하는것이다. 이 분석 시스템은 크게 세 가지 측면으로 설계하여 구현하였다. 첫째, 범주형 자료에 대한 탐색적 자료분석을 위하여 세 가지 종류의 히스토그램을 제공한다. 둘째, 범주형 변수들간에 존재하는 연관성을 측정하기 위한 여러 연관성 측도들을 제공한다. 특히, 현재 많이 사용되는 통계 패키지들에서 제공하지 못하는 모자익 그림과 연관 그림을 동적 그래픽스로 구현하여 연관성을 측정하거나 모형을 설정하는데 유용한 정보를 얻을 수 있도록 하였다. 셋째, 대수선형모형에 대한 분석을 통해 사용자가 가장 잘 적합된 대수선형모형을 선택할 수 있게 하였다.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.11
no.2
/
pp.169-174
/
2018
In general, the methods of the analysis of variance(ANOVA) for the continuous data and the chi-square test for the discrete data are used for statistical analysis of the effect and the association. In multidimensional data, analysis of hierarchical structure is required and statistical linear model is adopted. The structure of the linear model requires the normality of the data. A multidimensional categorical data analysis methods are used for causal relations, interactions, and correlation analysis. In this paper, Bayesian network model using probability distribution is proposed to reduce analysis procedure and analyze interactions and causal relationships in categorical data analysis.
Latent class models (LCM) are useful tools to draw hidden information from categorical data. This model can also be interpreted as a mixture model with multinomial component distributions. In some cases, however, an available dataset may contain both categorical and count or continuous data. For such cases, we can extend the LCM to a mixture model with both multinomial and other component distributions such as normal and Poisson distributions. In this paper, we consider a LCM for the data containing categorical and count data to analyze the Drug Review dataset which contains categorical responses and text review. From this data analysis, we show that we can obtain more specific hidden inforamtion than those from the LCM only with categorical responses.
Proceedings of the Korean Operations and Management Science Society Conference
/
1992.04b
/
pp.188-197
/
1992
제품 개발에 관한 응용 연구 혹은 개발 연구의 실험 결과가 품질특성의 본질적인 성격이나 측정시의 편의때문에 순차 범주형 자료(ordered categorical data)로 분류되는 경우가 있다. 본 논문에서는 망목 특성 문제(nominal-the-best type problem)를 분석하는데 있어서 기존의 다구찌 누적법이 순차 범주형 자료분석법이 안고 있는 문제점들을 고찰하고, 이를 개선하기 위해 품질손실에 근거한 목표 누적법을 제시한다. 본 논문에서 제시한 기법을 post-etch contact window데이타에 적용해 본 결과 인자의 최적수준을 결정하는데 용이하였다.
범주형 자료에 대하여 탐색적 자료분석을 할 수 있는 기존의 여러 그림들을 변수의 수가 많아지면 시각적인 식별이 어렵다는 단점이 있다. 본 논문에서는 삼차원이상의 다차원 범주형 자료를 이차원 평면성에 표현할 수 있는 링차트(ring chart)를 제안한다. 각 칸의 확률값을 표현하는 링차트는 범주형 자료의 구조 전체를 시각적으로 파악할 수 있으며, 관측값을 표준화한 링차트는 변수들간의 연관성 여부를 시각적으로 판단하는데 유용한 정보를 제공한다. 삼차원이상의 자료에서는 이중 링차트(조건부 링차트)를 개발하여 일차 및 이차교호작용 검정까지도 가능하다. 또한, 관측값과 잔차를 동시에 표현한 잔차 링차트는 설정된 모형의 적합성 여부를 시각적으로 평가할 수 있는 장점이 있다.
Yu, Ji Soo;Yoo, Jiyoung;Kim, Min-ji;Kim, Tae-Woong
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.348-348
/
2021
가뭄 연구의 궁극적 목표는 가뭄 발생의 메커니즘에 대한 이해를 높이고, 예측기술을 향상시켜 선제적 대응이 가능하도록 하는 것이다. 일반적으로 가뭄분석에 활용되는 가뭄지표는 연속형 변수로 간주하여 확률모형을 구축하지만, 가뭄상태와 가뭄피해 자료는 순서형 및 이산형 변수이므로 범주형 자료 분석 기법을 적용하는 것이 더 적절하다. 따라서 본 연구에서는 기상학적 가뭄과 피해발생 사이의 관계를 규명하기 위해 범주형 자료 분석 방법 중 로그선형(log-linear) 모형과 로지스틱(logistic) 회귀모형을 활용하였다. 가뭄피해 예측을 위한 가뭄 피해 정보를 수집하는 것은 매우 어려운 일이다. 가뭄의 영향으로 인해 발생할 수 있는 피해의 종류가 다양하며, 여러 분야의 이해관계자가 받아들이는 가뭄의 피해 양상이 다르기 때문이다. 본 연구에서는 국가가뭄정보포털(drought.go.kr)에서 충청북도의 가뭄피해현황 자료를 수집하였다. 30년(1991~2020년)동안 238개 읍면동 중 34개 행정구역에서 총 272건의 가뭄피해가 발생한 것으로 확인되었다. 표준강수지수(SPI)를 이용하여 분석된 지역별 연평균 가뭄발생횟수는 약 8.44회이며, 가뭄이 가장 많이 발생한 해는 2001년(평균 가뭄발생 18.7회)이었다. 강수의 부족으로 인해 발생하는 기상학적 가뭄이 사회경제적 피해를 야기하는 수문학적 가뭄으로 전이되기까지 몇 주에서 몇 달까지 시간이 소요된다. 이러한 관계를 파악하기 위해 가뭄피해 발생 여부를 예측변수, 가뭄피해 발생 이전의 가뭄상태를 설명변수로 설정하여 기상학적 가뭄 발생에 따른 가뭄피해 발생 확률을 산정하였다. 그 결과 가뭄피해 발생 당시의 가뭄상태보다 그 이전에 연속된 가뭄상태가 있을 경우 가뭄피해 발생 확률이 약 2.5배 상승하는 것으로 나타났다.
The collection and storage of a large volumes of data are becoming easier; however, the number of variables is sometimes more than the number of samples(objects). We now face the problem of dependency among variables(such as multicollinearity) due to the increased number of variables. We cannot apply various statistical methods without satisfying independency assumption. In order to overcome such a drawback we consider a categorizing (or discretizing) observations. We have a data set of nancial indices from banks in Korea that contain 78 variables from 16 banks. Genetic sequence data is also a good example of a large data and there have been numerous statistical methods to handle it. We discover lots of useful bank information after we transform bank data into categorical data that resembles genetic sequence data and apply bioinformatic techniques.
다차원 범주형 자료를 표준화된 링차트로 구현하면, 자료에 적합한 모형이 갖는 일차교호작용의 존재 유무를 파악할 수 있으며 또한 표준화된 조건부 링챠트를 통하여 동시에 두 개 이상의 일차교호작용의 존재유무를 발견할 수 있는데 3차원 자료에서는 최대 두 개의 일차교호작용항을, 그리고 4차원 자료에서는 최대 4개의 일차교호작용항의 존재를 파악할 수 있다.
Algorithms for estimating breeding values on several categorical data by using latent variables with threshold conception were developed and showed. Thresholds on each categorical trait were estimated by Newton’s method via gradients and Hessian matrix. This algorithm was developed by way of expansion of bivariate analysis provided by Quaas(2001). Breeding values on latent variables of categorical traits and observations on linear traits were estimated by preconditioned conjugate gradient(PCG) method, which was known having a property of fast convergence. Example was shown by simulated data with two linear traits and a categorical trait with four categories(CE=calving ease) and a dichotomous trait(SB=Still Birth) in threshold animal mixed model(TAMM). Breeding value estimates in TAMM were compared to those in linear animal mixed model (LAMM). As results, correlation estimates of breeding values to parameters were 0.91${\sim}$0.92 on CE and 0.87${\sim}$0.89 on SB in TAMM and 0.72~0.84 on CE and 0.59~0.70 on SB in LAMM. As conclusion, PCG method for estimating breeding values on several categorical traits with linear traits were feasible in TAMM.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.