• Title/Summary/Keyword: 번식생태

Search Result 330, Processing Time 0.028 seconds

Four-year Survey on Transitions of the Life Form of Plants after Developing Human-made Wetlands along Boknaecheon of Juam Lake (주암호 복내천 인공습지 조성 후 식물의 생활형에 대한 4년간의 변화 연구)

  • Kim, Chang-Hwan;Myung, Hyun
    • Korean Journal of Environment and Ecology
    • /
    • v.23 no.1
    • /
    • pp.30-40
    • /
    • 2009
  • Employing the Numata-type life form, the paper analyzed changes of plants for 4 years at the Human-made Wetlands along Boknaecheon of Juam Lake since its creation. The number of the species planted at the Human-made Wetlands along Boknaecheon of Juam Lake, which was completed in December 2002, were 15 in total including, 10 families, 13 genera, 12 species and 3 varieties. As for the three-featured life forms of the planted species, there were 6 perennial hydatophytes, recording the biggest number of species in dormancy form; species each of $R_5$, $R_3$, $R_{2-3}$ respectively in radicoid from; 20 species of geomantic dissenminule form ($D_1$) in disseminule form and erecred type(e) existed the most in growth form. With regard to the 3 features of life form identified during the final year of the monitoring that lasted 5 years after the completion of the Wetlands, the number of species and individuals was found to have increased but there was no significant change of tendency as against the composition ration(%) of life form. There were 43 species of therophytes (Th) that covered 24.29% in dormancy form, while $R_5$ was prevalent in radicoid form and $D_4$, $D_1$, and $D_{1,4}$ comprosed 77.39% of the whole disseminule form. Growth form was surveyed in the order of erected type (e), bunch type (t), temporal rosette type (pr), branch type (b) and straight rosette type (ps) and these species comprised 64.97% of the whole flora. Consequently, in case of the artificial wetlands along the Boknaecheon of Juam Lake, it turned out that the vegetation type in which pioneer species of succession, or gradually stabilized perennial vegetation favoring Wetlands because the higher dormancy form has its perennial plants' composition ratio getting, the more its succession is progressing. Even though single grained plants ($R_5$) belonging to radicoid in breeding form, succession is predicted to take place considering the fact that they actually belong to ~ plants like Phragmites japonica that form a connection on the surface of the earth. In addition, it is judged that geomantic disseminule form ($D_1$) conveyed by water and gravitational disseminule form favored by the development of waterside woody plants ($D_4$) seem to be better fit to this area in desseminule form. As for growth form, bunch type (t) is judged to become prevalent on the Wetlands while a good variety of phanerophytes will coexist on the earth due to artificial as well as natural disturbances.

Morphological Adaptation of Zostera marina L. to Ocean Currents in Korea (한국산 거머리말(Zostera marina L.)의 해류에 대한 형태적 적응)

  • Lim, Dong-Ok;Yun, Jang-Tak;Han, Kyung-Shik
    • Korean Journal of Environment and Ecology
    • /
    • v.23 no.5
    • /
    • pp.431-438
    • /
    • 2009
  • The main purpose of this research is to prepare and provide basic materials for the propagational strategy of eelgrass by investigating on the morphological adaptation of Korean Zostera marina to ocean currents. An eelgrass plant mainly consists of rhizome, leaf sheath, leaves and roots. The rhizome is the horizontal stem of the plant that serves as the backbone from which the leaves and roots emerge. The leaf sheath is the bundle at the base of the leaves that holds the leaves together, protecting the meristem, the primary growth point of the shoot. Leaves originate from a meristem which is protected by a sheath at the actively growing end of the rhizome. As the shoot grows, the rhizome elongates, moving across or within the sediment, forming roots as it progresses. The aggregated leaves from the leaf sheath are found to have two cell layers on one side and multiple layers of airy tissues called aerenchyma on the other. The aerenchyma tissues are developed in multi-layered cell structures surrounding the veins which are formed in the leaf sheath. Generative shoots are made of rhizomes, which are circular or ovoidal, stem, and spathe and spadix. The transverse section of rhizome and the stem and central floral axis is found to be circular, ovoid and in the shape of convex respectively, and the vascular bundle, which is a part of transport system, has one large tube in the center and two small tubes on both sides. The layers of collenchyma cells numbered from 12 to 15 in the stem, and from 7 to 12 in the rhizome. The seed coat is composed of sclereids, small bundles of sclerenchyma tissues, which prevent the influx of sea water from the outside and help endure the environmental stress. In conclusion, alternative multi-layer structure in circular, convex type aggregated leaf base are interpreted to morphological adaption as doing tolerable elastic structure through movement of seawater. The generative shoots develop long slim stem and branches in circular or ovoidal shapes to minimize the adverse impacts of sea current, which can be interpreted as the plant's morphological adaptation to its environment.

Environmental Factors Affecting the Start and End of Cicadae Calling - The Case Study of Hyalessa fuscata and Cryptotympana atrata - (매미과 울음 시작 및 종료에 영향을 미치는 환경요인 - 참매미, 말매미를 대상으로 -)

  • Kim, Yoon-Jae;Ki, Kyong-Seok
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.3
    • /
    • pp.342-350
    • /
    • 2018
  • The purpose of this study was to identify the environmental factors that affect the beginning and end of calling by Hyalessa fuscata and Cryptotympana atrata, which are dominant cicada species in the central urban areas of Korea. The study area was Banpo Apartments in Seoul. The research period included two months, being from the end of July to the end of August 2015. We analyzed the start and end time of cicada calling, and on average H. fuscata started calling at 5:21 am and C. atrata started at 7:40 am. The average end time of calling was 6:31 pm for H. fuscata and 7:51 pm for C. atrata. From the scatter plot and box plot results, H. fuscata started calling at 05:00 am, whereas C. atrata consistently stopped calling at 20:00 pm compared to H. fuscata. Multiple regression analysis of the start and end time of cicada calling showed that sunrise time was a factor affecting the start of H. fuscata calling. The end time of H. fuscata calling was affected by sunset time and total cloud cover. The starting time of C. atrata calling was mostly affected by temperature and sunrise time. The effect of temperature was greater than that of sunrise time. The end time of C. atrata calling was strongly affected by sunset time, whereas peak temperature was also shown to affect the end time. From the above results, sunrise and sunset are thought to be the critical factor affecting the start and end time of H. fuscata calling. Therefore, H. fuscata started calling with sunrise, and the end time was also affected by sunset. Temperature was the factor most affecting the start of C. atrata calling and sunset was identified as the factor affecting the end time. Therefore, the start time of C. atrata calling shows variation with daily temperature changes, and C. atrata stop calling simultaneously with sunset.

Reproductive Growth of Seeds and Overwintered Stump of Bulrush (Scirpus juncoides Roxb.) (올챙고랭이(Scirpus juncoides Roxb.) 종실(種實) 및 월동주기부(越冬株基部)의 번식생장(繁殖生長)에 관한 연구(硏究))

  • Huh, S.M.;Guh, J.O.
    • Korean Journal of Weed Science
    • /
    • v.7 no.1
    • /
    • pp.35-44
    • /
    • 1987
  • Differing in water conditions, the dry matter weight per plant was highest at 0 cm flooding depth, and was decreased at above 2 cm flooding depths. The shoot and spikes per pot developed best at flooding depths of 0 and 2 cm, but worst at -5cm or above 4cm flooding depths. The dry matter weight of shoots was linearly increased, but the weight of roots was sharply decreased according to high temperature after flower initation. The shoots and spikes per pot developed more effectively at 25$^{\circ}C$ than at 35 or 15$^{\circ}C$. The number of shoot and spike per pot were decreased according to higher shading. The effects of shading of 25-45% were not significantly small. The natural white and yellow spectra were the most effective to increase dry matter weight, shoots and spikes per pot. The dry matter weights of shoot and root per plant were not significantly different among at: 50 and 75% clay. The number of shoots were best and continuously increased at 75% clay, and the increments at 0 and 100% clays showed the lag period at early stage. The pattern of spikes was similar to shoots with less difference in various clay composition. The dry matter weight per plant in paddy field and upland field was basically similar. The numbers of shoot and spike were increased in response to increased fertilizer levels up to 20Kg per 10a of each component.

  • PDF

Effect of Priming, Temperature and Light Quality on Germination of Pokeweed(Phytolacca americana) Seed (Priming, 온도 및 광질이 미국자리공 종자의 발아에 미치는 영향)

  • 강진호;류영섭;김동일;이외숙;김성희
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.2
    • /
    • pp.153-159
    • /
    • 1997
  • Pokeweed, a polycarpic plant, has been used as herbage medicine, vegetable or dye. It, however, is known as an aggressive plant in the vicinity of the industrial area evolving air pollutants. The experiment was done to determine the effect of priming using nitrates, germination temperature and light quality on germination of its seed to get information on the optimum germination process as well as its establishment. The daily percent germination was measured to 12 days after sowing since its seeds were treated by two different nitrates [KNO$_3$, Ca(NO$_3$)$_2$]. their different concentrations (0, 50, 150, 300mM), then treatment duration (1, 3, 6 days), different germination temperature (day /night; 30/30, 30/20, 20/30, 20/2$0^{\circ}C$) and light quality (red, white, dark) before or during germination. The percent germination was greater in the KNO$_3$ treatment than in the Ca(NO$_3$)$_2$ but in the priming treatment with KNO$_3$ in comparison with no-priming. In the priming treatment with KNO$_3$, the percent germination was increased with its increased concentration to 150mM although decreased with delayed duration to 6 days. Regardless of light quality, the greater percent germination was shown in the order of 2$0^{\circ}C$ constant and 20/3$0^{\circ}C$ alternative, 3$0^{\circ}C$ constant, 30/2$0^{\circ}C$ alternative temperature. The germination was less in the dark during germination than in the illumination in which the red light had greater percent germination compared to white light. The seeds primed with KNO$_3$ were germinated under the alternative temperature even in the dark condition.

  • PDF

Physiological and Ecological Characteristics of the Apple Snails (왕우렁이 (apple snails)의 생리.생태적 특성에 관한 연구)

  • Lee, Sang-Beom;Koh, Mun-Hwan;Na, Young-Eun;Kim, Jin-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.1
    • /
    • pp.50-56
    • /
    • 2002
  • This experiment was carried out to obtain some information about overwintering, physiological and ecological characteristics of apple snails. Another purpose of this experiment was to characterize an appetite for rice plants by apple snails and to elucidate their choice of fresh green ones (vegetables, some other crops, weeds in rice fields). The freshwater snails were found with higher population at sites abundant organic compounds such as plant debris and at regions with high temperature. They also prefer calcium-rich water. This is a naturally occurring process. Apple snails were exceptionally veil-adapted to the south regions of Korea, especially Janghang, Jangseong and Haenam, even if the temperature of winter season is cold below 0$^{\circ}C$. Apple snails were not very selective in their food choice and eat almost everything available in their environment. A snail have something called a radula in its mouth for grinding up its food. A apple snail also chews on fruits and young succulent plant barks. In case of reproduction. apple snails deposit about 157$\sim$784 (average of 321 eggs) milky white to pale orange colored eggs above the waterline. In approximately every 22.4 seconds a new egg appears. The total time needed to deposit a egg mass varies from 58 minutes$\sim$4 hours 13 minutes. Apple snails reproduct actively from May to June and from September to October. An appetite of apple snails for rice plants was the different depending on their size and glowing stage for rice plants. Apple snails had a great appetite of rice plants as well as dropwort, tomato, cabbage, radish, aquatic plants etc. They preferred to eat young rice plants and drastically quit eating rice plants of over 40 cm in height. Thus considering the food preference of apple snail for various plants including rice, they were thought to be a potentially strong predator in fields, especially, at regions with warmer winter.

Distributional Characteristics and Evaluation of the Population Sustainability, Factors Related to Vulnerability for a Polygonatum stenophyllum Maxim. (층층둥굴레(Polygonatum stenophyllum Maxim.)의 분포특성과 개체군의 위협요인 및 지속가능성 평가)

  • Kim, Young-Chul;Chae, Hyun-Hee;Ahn, Won-Gyeong;Lee, Kyu-Song;Nam, Gi-Heum;Kwak, Myoung-Hai
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.3
    • /
    • pp.303-320
    • /
    • 2019
  • Plants interact with various biotic and abiotic environmental factors. It requires much information to understand the traits of a plant species. A shortage of information would restrict the assessment, especially in the evaluation of what kind of factors influence a plant species to face extinction. Polygonatum stenophyllum Maxim. is one of the northern plants of which Korea is the southern distribution edge. The Korean Ministry of Environment had designated it to be the endangered species until December 2015. Although it is comparatively widespread, and a large population has recently been reported, it is assessed to be vulnerable due to the low population genetic diversity. This study evaluated the current distribution of Polygonatum stenophyllum Maxim. We investigated the vegetational environment, population structures, phenology, soil environment, and self-incompatibility based on the results. Lastly, we evaluated the current threats observed in the habitats. The habitats tended to be located in the areas where the masses at the edge of the stream accumulated except for those that were located on slopes of some mountainous areas. Most of them showed a stable population structure and had re-established or recruited seedlings. Polygonatum stenophyllum Maxim. had the difference in time when the shoots appeared above the ground depending on the depth of the rhizome located in the underground. In particular, the seedlings and juveniles had their rhizome located shallow in the soil. Visits by pollinator insects and success in pollination were crucial factors for bearing of fruits by Polygonatum stenophyllum Maxim. The threats observed in the habitat of Polygonatum stenophyllum Maxim. included the expansion of cultivated land, construction of new buildings, and construction of river banks and roads. Despite such observed risk factors, it is not likely that there would be rapid population reduction or extinction because of its widespread distribution with the total population of more than 2.7 million individuals and the new populations established by the re-colonization.

Experimental Transplantation for the Restoration of Seagrass, Zostera marina L. Bed Around Sinyangseopji Beach in Bangdu Bay, Jeju Island (제주 신양섭지해수욕장 주변 방두만 거머리말 군락 복원을 위한 실험적 이식)

  • LEE, HYUNG WOO;KANG, JEONG CHAN;PARK, JUNG-IM;KIM, MYUNG SOOK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.4
    • /
    • pp.343-355
    • /
    • 2021
  • Eelgrass, Zostera marina L., was widely distributed around Sinyangseopji Beach in Bangdu Bay, on the eastern coast of Jeju Island, until breakwater construction in the late 1990s resulted in its complete loss. Six experimental sites were identified for restoration of the Z. marina bed in Bangdu Bay. Using the staple method, 500 Z. marina shoots were transplanted at each site in January 2019 and 2020. The transplants, along with environmental parameters, were monitored for 10 months following transplantation. There were significant differences in underwater irradiance, water temperature, and salinity among the sites, but all were suitable for Z. marina growth. The Ulva species, an opportunistic alga, appeared in spring and accumulated during summer at all sites; however, there was no significant effect of Ulva species on the survival and growth of the eelgrass transplants. Most of the transplanted Z. marina survived, and after 3 months, the density increased by 112.5-300% due to vegetative propagation, with a rapid rate of increase observed during spring and early summer at all sites. For 1-2 months after transplanting, the Z. marina shoots showed signs of transplant shock, after which the shoot density increased at all sites, confirming that all transplants adapted well to the new environment. However, in both 2019 and 2020, during late summer to early fall, the sites experienced heavy damage from typoons (twice in 2019 and three times in 2020) that hit Bangdu Bay. The transplants at two sites located in the center of Bangdu Bay were completely destroyed, but those at three sites located to the west of the bay showed a 192-312% increase in density. Thus, we confirmed that the Bangdu Bay Z. marina bed can be restored, with the highest probability of success for Z. marina restoration on the western side of Bangdu Bay, which is protected from typhoons.

A review of the mass-mortalities of sea-cage farm fishes (해상 가두리양식장 양식어류의 대량폐사에 대하여)

  • Han, Jido;Lee, Deok-Chan
    • Journal of fish pathology
    • /
    • v.35 no.1
    • /
    • pp.1-25
    • /
    • 2022
  • The aquaculture industry has developed rapidly over the last three decades and is an important industry that supplies over 15% of humans' animal protein intake; therefore, there is a need to increase production to meet the continuous demand. The fish cage farms on the southern coast (Kyengsangnam-do and Jeollanam-do) of Korea are critical resources in aquaculture because they account for approximately 90% of the national total fish cage farms by water area ratio. However, the current aquaculture environment is being gradually affected by climate change, which is a global issue, and its effects are expected to intensify in the future. Therefore, it is urgently imperative to accurately evaluate the effects of climate change on South Korean aquaculture industries and to develop social and national strategies to minimize damage to the fishing industry. The damage to fish farmed in cage farms on the southern coast is increasing annually and the leading causes are high and low water temperature and red tides, which are directly or indirectly related to climate change. At present, global warming can provide opportunities for aquaculture industrialization of fish or other novel species, with economic implications. However, despite such opportunities, the influx of new species can also cause problems such as ecological disturbances, increase in the reproduction frequency of microalgae such as red tide, increase in disease incidence, and occurrence and periods of high water temperatures in summer. The scale of farmed fish mortality is increasing due to the complex effects of these factors. Increased damages due to fish mortality not only have severe economic impacts on the aquaculture industry, but the social costs of responding to the damage and follow-up measures also increase. various active responses can reduce the mortality damage in fish farms such as improving the management skills in aquaculture, improved species breeding, efficient food management, disease prevention, proactive responses, and system-wide improvements. This review article analyzes the large-scale mortality cases occurring in fish cage farms on the southern coast of Korea and proposes measures to mitigate mortality and enhance responses to such scenarios.

ON THE EFFECTS CHLORINITIES UPON GROWTH OF EARLIER LARVAE AND POST-LARVA OF A FRESH WATER PRAWN, MACROBRACHIUM ROSENBERGI(DE MAN) (담수산새우 Macrobrachium rosenbergi (de Man)의 초기유생 및 Post-larva.의 성장에 미치는 염분량에 관하여)

  • KWON Chin Soo;UNO Yutaka;OGASAWARA Yohismitsu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.10 no.2
    • /
    • pp.97-114
    • /
    • 1977
  • The fresh water prawn, Macrobrachium rosenbergi(de Man) is a very common species in Indopacific region, which inhaits both fresh and brackish water in low land area, most of rivers and especially aboundant in the lower reaches which are influenced by sea water. It is one of the largest and commercial species of genus Macrobrachium, which is commonly larger than $18\~21cm$ in body length, from the basis of eye-stalked to the distal of telson. As a part of the researches in order to investigate the possibilities on transplantation and propagation of this species, this work dealt with the problems on the effects of chlorinities upon zoeal larvae and post-larvae 1). metamorphosis rate and optimum chlorinity for metamorphosis to post-larve, 2). tolerance and comparative survival rate on various chlorinties, from fresh water to sea water $(19.38\%_{\circ}\;Cl)$, which reared for six days upon each stage of zoeal larvae, 3). accomodation rate on chlonities which reared for twelve days after transmigration into variant chlorinities of the range from $3.68\%_{\circ}$ Cl to $1.53\%_{\circ}$ Cl in the way of rearing of the range from $3.82\%_{\circ}$ Cl to $11.05\%_{\circ}$ upon each stage of zoea, 4). tolerance on both of fresh and sea water upon zoeal larva and post-larva under the condition of $28^{\circ}C{\pm}1$ in temperature and feeding on Artenia salina nauplii, 5). relationship between various chlorinities and grwth of post-larvae under the condition of $28^{\circ}C$ in tmperature and feeding on meat of clam. Thus these investigations were performed in order to grope for a comfortable method on seedmass production. Up to the present, the study on the effects of chlorinity upon earlier zoeal larvae and post-larvae of Macrobrachium species has been scarcely performed by workers with the exception of Lewis(1961) and Ling (1962,, 1967), even so their works were not so detailed. On the other hand, larvae of several species of this genus were reared at the water which mixed sea water so as to carry out complete metamorphosis to post-larva by workers in order to investigate on earlier 1 arval and earlier post-larval development, such as Macrobrachium lamerrei (Rajyalakshmi, 1961), M. rosenbergi and M. nipponense (Uno and Kwoa, 1969; Kwon and Uno, 1969), M. acanthurs (Choudhury, 1970; Dobkin, 1971), M. carcinus(Choudhury, 1970), M. formosense(Shokita, 1970), M. olfersii (Duggei et al., 1975), M. novaehallandiae (Greenwood et al., 1976), M. japonicum (Kwon, 1974) and M. lar (Shokita, personal communication), and there fore it is regarded that chlorinity is, generally, one of absolute factors to rear zoeal larvae of brackish species of Macrobrachium genus. Synthetic results on this work is summarized as the follwings: 1) Zoeal larvae required different chlorinities to grow according to each stage, and generally, it is regarded that optimum range of living and growing is from $7.63\%_{\circ}Cl\to\;7.63\%_{\circ}Cl$, and while differences of metamorphsis rate, from first zoea to post-larva, is rarely found in this range, and however it occurs apparently in both of situation at $7.63\%_{\circ}Cl$ below and $16.63\%_{\circ}Cl$ above and moreover, metamorphosis rate is delayed somewhat in case of lower chlorinity as compared with high chlorinity in these situations. 2) Accomodation in each chlorinity on the range, from fresh water to sea water, is different according to larval stages and while the best of it is, generally, on the range from $14.24\%_{\circ}Cl$ to $8.28\%_{\circ}Cl$ and favorite chlorinity of zoea have a tendency to remove from high chlorinity to lower chlorinity in order to advance larval age throughout all zoeal stages, setting a conversional stage for eighta zoea stage. 3) Optimum chlorinity of living and growth upon postlarvae is on the range of $4.25\%_{\circ}Cl$ below, and in proportion as approach to fresh water, growth rate is increased. 4) Post-large are able to live better in fresh water in comparison with zoeal larvae, which are only able to live within fifteen hours, and by contraries, post-larvae are merely able to live for one day as compared with ?미 larvar, which are able to live for six days more in sea water $19.38\%_{\circ}Cl\;above$. 5) Also, in case of transmigration into higher and lower chlorinities in the way of rearing in the initial chlorinities $ 3.82\%_{\circ}Cl,\;7.14%_{\circ}Cl\;and\;11.05%_{\circ}Cl$, accoodation rate is a follow: accomodation capacity in ease of removing into higher chlorinities from lower chlorinities is increased in proportion as earlier stages, setting a conversional stage for eighth zoea stage, and by contraries, in case of advanced stages from eighth zoea it is incraesed in proportion as approach to post-larva stage in the case of transmigration into lower chlorinity from higher chlorinity. On the other hand, it is interesting that in case of reciprocal transmigration between two different chlorinitiess, each survival rate is different, and in this case, also, its accomodation in each zoea stage has a tendency to vary according to larval stages as described above, setting a conversional stage for eighth zoea stage. 6) It is likely that expension of radish pigments on body surface is directly proportional to chlorinity during the period of zoea rearing, and therefore it seems like all body surfacts of zoea larvae be radish coloured in case of higher chlorinity. 7) By the differences that each zoeal larvae, postlarvae, juvaniles and adult prawn are required different chlorinity for inhabiting in each, it is regarded that this species migrats from up steam to near the estuary of the river which the prawns inhabits commonly in natural field for spawning and growth migration. 8) It had better maintainning chlorinities according to zoeal stage for a comfortable method on seed-mass production that earlier larva stages than eighth zoea are maintained on the range from $8\%_{\circ}Cl\;to\;12\%_{\circ}Cl$ to rear, and later larva stages than eighth zoea, by contraries, are gradually regula ted-to love chlorininity of the range from $7\%_{\circ}Cl\;to\;4\%_{\circ}Cl$ according to advance for post-larva stage.

  • PDF