• Title/Summary/Keyword: 버스 정류장 대기

Search Result 15, Processing Time 0.023 seconds

A study on the Spacing between Near-side Bus Stops and Signalized Intersection in Median Exclusive Bus Lane (중앙버스전용차로 근측정류장과 신호교차로의 이격거리 산정에 관한 연구)

  • Choi, Yoon-Young;Kang, Wonmo;Ha, Dongik;Kho, Seung-Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.6
    • /
    • pp.62-70
    • /
    • 2016
  • Increased bus traffic leads inefficiency at near-side bus stops in median exclusive bus lane because buses are waiting for a signal does not have a vehicle arrived. This study suggests a method for estimating a proper spacing between bus stops and signalized intersection to prevent the inefficiency. We modified the Poisson model for a proper spacing by using both dwell time and waiting time of signal instead of using dwell time only. The waiting time of signal changes by spacing and it was measured using micro simulation program. The iterative algorithm using the change of waiting time of signal was also suggested. By applying the proposed method, measure waiting time by simulation and iterative algorithm, the spacing of near-side bus stops, proper spacing is suggested according to flow rate level.

Determination of the Required Minimum Spacing between Signalized Intersections and Bus-Bays (신호교차로와 버스정류장간 이격거리 산정에 관한 연구)

  • 하태준;박제진;임혜영
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.4
    • /
    • pp.73-82
    • /
    • 2002
  • The influence of bus stops near signalized intersections is one of the important factors which cannot be negligible in the analysis of the capacity of signalized intersections. Absence of consideration of bus bay can reduce capacity and increase the time that the stop of buses block other traveling vehicles. This influence is reflected by the bus blockage adjustment factor in KHCM, but the factor does not consider the course of each bus passing the intersection. Particularly, left turn buses have more influence on the capacity than the other buses and require the minimum length of the road for lane changes. All the existing criteria can apply only to arterial roads on which mostly traffic flows are continuous. And the criteria. which can determine the optimum location and the minimum distance between a signalized intersection and a bus bay, is not prepared and the related study is insufficient. Therefore, a theoretical formula is derived in this study being based on the theories which are avaliable to apply to the situation of signalized intersections.

Bus stop passenger waiting simulation considering transfer passengers: A case study at Cheongju Intercity Bus Terminal (환승객을 고려한 버스 정류장 승객 대기 시뮬레이션: 청주 시외 버스 터미널 정류장 사례 연구)

  • Lee, Jongsung
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.4
    • /
    • pp.217-228
    • /
    • 2021
  • After the integrated fare system has been applied, public transportation and transfer traffic increased. As a result, transfer passengers must be considered in the operation of the bus. Although previous studies have limitations due to utilizing deterministic mathematical models, which fails to reflect the stochastic movements of passengers and buses, in this study, a more realistic bus stop micro-simulation model is proposed. Based on the proposed simulation model, we represent the relationship between bus arrival interval and passenger wait time as a regression model and empirically show the differences between the cases with and without transfer passengers. Also, we propose a method converting passenger waiting time to cost and find optimal bus arrival interval based on the converted cost. It is expected the proposed method enables bottom-up decision making reflecting practical situation.

Development of a Model for Dynamic Station Assignmentto Optimize Demand Responsive Transit Operation (수요대응형 모빌리티 최적 운영을 위한 동적정류장 배정 모형 개발)

  • Kim, Jinju;Bang, Soohyuk
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.17-34
    • /
    • 2022
  • This paper develops a model for dynamic station assignment to optimize the Demand Responsive Transit (DRT) operation. In the process of optimization, we use the bus travel time as a variable for DRT management. In addition, walking time, waiting time, and delay due to detour to take other passengers (detour time) are added as optimization variables and entered for each DRT passenger. Based on a network around Anaheim, California, reserved origins and destinations of passengers are assigned to each demand responsive bus, using K-means clustering. We create a model for selecting the dynamic station and bus route and use Non-dominated Sorting Genetic Algorithm-III to analyze seven scenarios composed combination of the variables. The result of the study concluded that if the DRT operation is optimized for the DRT management, then the bus travel time and waiting time should be considered in the optimization. Moreover, it was concluded that the bus travel time, walking time, and detour time are required for the passenger.

A Method for Locating Bus Stops Considering Traffic Safety at Signalized Intersections (교통안전을 고려한 신호교차로 버스정류장 설치방법에 관한 연구)

  • Lee, Jung-Hwan;Kwon, Sung-Dae;Park, Je-Jin;Ha, Tae-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4D
    • /
    • pp.527-538
    • /
    • 2011
  • Currently, the only established criteria is on the location of bus stops on principal roads where uninterrupted flow mainly occurs. There are no clear guidelines on any method to locating bus stops considering the characteristics of bus operation and pedestrians. If the location or exterior of a bus stop is inappropriate, road users including bus drivers and pedestrians will be caused serious dangerous and inconvenience. In this study, the research below was performed in order to propose rational criteria for the location of bus stops integrated with or separated from speed-change lanes at signalized intersections considering smooth traffic flow and the characteristics of bus operation and pedestrians as well as traffic safety : First, the appropriate length of each of the near-side and far-side bus stops was calculated by categorizing bus stops to be constructed into those integrated with speed-change lanes and those separated from speed-change lanes. Secondly, the appropriate length of each of the bus stops divided into near-side bus stops and far-side bus stops and integrated with or separated from speed-change lanes was selected by considering the characteristics of pedestrians. Thirdly, whether the construction locations of bus stops were appropriate or not was determined based on the appropriate length of bus stops integrated with or separated from speed-change lanes, which was calculated and selected by considering traffic flow and the characteristics of pedestrians and considering traffic safety. The method for locating bus stops considering traffic flow, the characteristics of pedestrians, and traffic safety will be able to help suggestion criteria of bus stop and the location of safe and pleasant bus stops.

Establishment about Service Level and Evaluation Model of Bus Stop (버스 정류장의 서비스 수준 및 평가모델 구축에 관한 연구)

  • Lee, Won Gyu;Jung, Hun Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2D
    • /
    • pp.217-225
    • /
    • 2008
  • Bus stop is necessary to improve user-focused environment to offer convenient service because of the large number of passengers. This study is to analyze user's evaluation and establishment model of the service levels at bus stop using GAP analysis, IPA and Structural equation model and suggests improvement direction of bus stop. In the GAP analysis, on thirty-one service items of bus stop, the difference appeared highly from the items such as obstacle's facility and the information related to the using bus. In the current IPA service bus operation information, cadence facility and obstacle support facility need to be improved. And in service expectation bus operation information and th exchange facility, the obstacle support facility need to be improved continuously. The evaluation model of bus stop service due to a structure equation's was fitted well by structure equation. In overall satisfaction on bus stop, the waiting satisfaction is more affect the satisfaction of bus use facility. Satisfaction in bus use facility, the related information of bus operation, cadence facility, bus operation information and trans facility, obstacle support facility is more affect compare to other items. The lower overall satisfaction in bus stop is the higher the expectation of overall satisfaction is. Therefore, the information of bus operation and the support facility for the handicapped needs an active improvement plan than ever.

A Study on Passengers' Travel Characteristics at Bus Stops on Seoul Ring Expressway (서울외곽순환고속도로 버스정류장 승하차 및 환승통행실태)

  • Lee, Soongbong;Baek, Seungkirl;Kim, Jiyoon;Choo, Sang Ho
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.2
    • /
    • pp.170-181
    • /
    • 2015
  • This study explores passengers' travel characteristics at six bus stops on the Seoul Ring Expressway using smart traffic card data. Based on the characteristics, political strategies to improve bus facilities on expressway are suggested. Firstly, among them two bus stops of Guri and Uiwang-Cheonggye have higher transfer rate of passengers, 37.56% and 36.9% of the total intercity (red) bus passengers on the expressway, respectively. Secondly, Uiwang-Cheonggye bus stop has the highest transfer rate, and Guri bus stop has also higher transfer rate and the highest on-and-off passengers. It implies that both bus stops need to be prioritized for improving bus stop facility, access roads, and connection facility between the bi-directional stops. Thirdly, Guri (down) bus stop has relatively longer waiting time for transfer, thus shorter bus headways running the bus stop should be considered. Lastly, most passengers using both stops come to and from Bundang-gu in Geongnam City. Overall, the results of this study would be helpful for transport planners to develop effective bus route policies and bus operation.

An Opportunity Cost Based Headway Algorithm in Bus Operation (기회손실비용을 고려한 버스 운행시격과 링크 통행시간 예측 알고리즘)

  • 이영호;조현성;김영진;안계형;배상훈
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.3
    • /
    • pp.43-54
    • /
    • 2000
  • 이 연구는 버스정보 시스템 설계에 필요한 운행시격 결정과 통행시간 예측을 위한 알고리즘 개발을 다룬다. 운행시격 결정 문제는 버스와 같은 대중교통 수단을 운영하는데 중요한 요소 중에 하나이다. 기존 연구는 버스 운행비용과 승객비용의 합을 최소로 하는 운행시 격을 찾는데 초점을 두고 이다. 이때 승객비용이란 승객 대기비용과 승객 교통비용의 합으로 이루어진다. 그런데 우리나라와 같이 버스회사 수입이 전액 운행수입에만 의존하는 경우엔 이러한 접근 방식이 타당하지 않다. 기존의 방식과 다르게 승객비용으로 승객 이탈비용을 사용하여 버스의 최적 운행시 격을 구하는 것이 이 연구의 목적이다. 먼저 정류장이 하나인 경우에 대해 해석적 방법으로 풀고, 정류장이 여러 개인 경우에 대해서는 시뮬레이션 기법을 적용한다. 또한 이 연구는 신뢰성이 높고 정확한 통행시간 예측정보를 산출하기 위해 2 단계 예측 기법과 전문가시스템을 이용하는 자료융합 알고리즘을 개발한다. 정확한 정보를 제공하려면 교통정보 수집원을 통해 얻는 자료가 정확해야 하고, 또한 교통상황 변화에 따라 실시간으로 통행시간을 예측하는 것이 필요하다. 이 연구는 AVL(Automatic Vehicle Location)시스템을 이용한 버스정보시스템에서 실시간 데이터와 과거 데이터를 융합하여 통행시간을 예측하는 알고리즘을 개발한다. AVL 데이터를 수집하는 과정에서는 경제성을 고려하여 데이터를 수집한다. 그리고, 버스의 운행관리와 정확한 도착예정시간을 예측하기 위해 AVL시스템을 통해 얻은 데이터의 패턴을 분석하고 유고상황을 감지한다.

  • PDF

Development of an Algorithm for Minimization of Passengers' Waiting Time Using Smart Card Data (교통카드 데이터를 이용한 버스 승객 대기시간 최소화 알고리즘 개발)

  • Jeon, Sangwoo;Lee, Jeongwoo;Jun, Chulmin
    • Spatial Information Research
    • /
    • v.22 no.5
    • /
    • pp.65-75
    • /
    • 2014
  • Bus headway plays an important role not only in determining the passenger waiting time and bus service quality, but also in influencing the bus operation cost and passenger demand. Previous research on headway control has considered only an hourly difference in the distribution of ridership between peak and non-peak hours. However, this approach is too simple to help manage ridership demand fluctuations in a short time scale; thus passengers' waiting cost will be generated when ridership demand exceeds the supply of bus services. Moreover, bus ridership demand varies by station location and traffic situation. To address this concern, we propose a headway control algorithm for minimizing the waiting time cost by using Smart Card data. We also provide proof of the convergence of the algorithm to the desired headway allocation using a set of preconditions of political waiting time guarantees and available fleet constraints. For model verification, the data from the No. 143 bus line in Seoul were used. The results show that the total savings in cost totaled approximately 600,000 won per day when we apply the time-value cost of waiting time. Thus, we can expect that cost savings will be more pronounced when the algorithm is applied to larger systems.

Investigating the Monetary Value of Bus Arrival Time Information (실시간 버스도착정보의 가치 측정에 관한 연구)

  • Bin, Mi-Young;Kim, Hyo-Bin
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.6 s.84
    • /
    • pp.81-89
    • /
    • 2005
  • Real-time bus arrival information within the Bus Information System (BIS) is an invaluable resource for users that demand accurate and up-to-date bus headway information while waiting at a bus stop. The associated benefits of such a system come in two folds, that is to 1) resolve the psychological uncertainty caused by the lack of real-time bus arrival information and 2) empower the user waiting at bus stops with the ability to reliably coordinate various tasks and errands, such as a quick trip into a convenience store or restroom without fear of missing a bus pick-up. This paper discusses the appropriate methodology with which to measure the economic value of reliable bus arrival information, with particular emphasis on the psychological uncertainty in users associated with the lack of real-time headway information at bus stops. Data regarding bus transit users' willingness to pay for such a service is obtained through questionnaire surveys, and the Contingent Valuation Method is used to analyze and derive the associated economic value. Our findings indicate the monetary value associated with a real-time bus arrival information system is approximately 132.5 won/min at the 0.3 significance level.