• Title/Summary/Keyword: 밸브 트림

Search Result 11, Processing Time 0.028 seconds

Numerical Study on Cavitation Reduction in Velocity-Control Trim of Valve with High Pressure Drop (고차압 밸브의 속도제어형 트림에서 케이테이션 억제에 관한 수치적 연구)

  • Kim, Dae Kwon;Sohn, Chae Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.863-871
    • /
    • 2013
  • Flow characteristics of velocity-control trim in a valve is investigated numerically with high pressure drop. A basic trim widely used for a valve in domestic powerplants is selected and designed for a baseline of velocity-control trim. The numerical analysis is focused on flow rate and cavitation with the basic trim. For a condition of high-pressure drop, pressure drop between inlet and outlet and fluid temperature are selected to be 18.1 MPa and $160^{\circ}C$, respectively, which are typical ones considering operating conditions adopted in powerplants. With this baseline model and condition, design changes are made for improvement of flow rate and cavitation phenomenon. For re-design, trim is divided into three zones in radial direction and design parameters of flow area, stage, and flow direction are considered in each zone. With these combined parameters applied to each zone, 4 models with design changes are proposed and their flow rates and cavitation areas are investigated. From comparison with those in the baseline model of a basic trim, proposed models show better performance in both flow rate and cavitation.

The Intact Evaluation of High Pressure Control Valve Trim Parts (고차압 제어밸브 트림부 분석 및 개선방안 검토)

  • Jang, H.;Yoon, I.S.;Kim, Y.B.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.581-584
    • /
    • 2008
  • At the inlet and outlet differential pressure and The fluid velocity over 32m/s are damaged (Plug, sheet ring, trim) About reduction trim parts of the control valve. AOV of the differential pressure 1,500psi become often the damage in the nuclear power plant. Damages of AOV studied CFD analysis and improvement program. Multi-stage trim designs which decrease a fluid kinetic energy are demanded and AOV parts are demanded case hardening and material change.

  • PDF

Optimization of Valve Gates Locations Using Automated Runner System Modeling and Metamodels (유동 안내부 모델링 자동화 및 근사모델을 이용한 자동차용 도어트림의 밸브 게이트 위치 최적화)

  • Joe, Yong-Su;Park, Chang-Hyun;Pyo, Byung-Gi;Rhee, Byung-Ohk;Choi, Dong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.115-122
    • /
    • 2014
  • Injection pressure is one of factors that influence part quality. In this paper, injection pressure was minimized by optimizing valve gate locations. In order to perform design optimization, MAPS-3DTM (Mold Analysis and Plastic Solution-3D) was used for injection mold analysis and PIAnOTM (Process Integration, Automation and Optimization) was used as process integration and design optimization. Also we adapted meta models based on design of experiments for efficiency. By using introduced methodology, we were able to obtain a result so that maximum injection pressure reduced by 28% compared to the initial design. And the validity of the proposed method could also be demonstrated.

Numerical Analysis of the 3-D Flow Field in a Globe Valve Trim under High Pressure Drop (고차압 제어용 글로브 밸브 트림 내부의 3차원 유동장 해석)

  • Yoon, Joon-Yong;Byun, Sung-Joon;Yang, Jae-Mo;Lee, Do-Hyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.3 s.12
    • /
    • pp.14-20
    • /
    • 2001
  • Numerical analysis of the three dimensional turbulent flow field in a complex valve trim is carried out to confirm the possibility whether this simulation tool can be used as a design tool or not. The simulation of the incompressible flow in a glove valve is performed by using the commercial code. CFD-ACEA utilizes the finite volume approach as a discretization scheme, and the pressure-velocity coupling is made from SIMPLEC algorithm in it. Four flow cases of the control valve are investigated, and the valve flow coefficient for each case is compared with the experimental data. Simulation results show a good agreement with the experiments, and it is observed that the cavitation model improves the simulation results.

  • PDF

Numerical Analysis on Flow Characteristics of High Pressure Drop Control Valves with Anti-Cavitation Trim (Anti-Cavitation Trim을 갖는 고차압 제어밸브의 유동특성에 관한 수치해석)

  • Ahn, Y.J.;Kim, B.J.;Shin, B.R.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.4
    • /
    • pp.61-70
    • /
    • 2007
  • Numerical analysis of three dimensional incompressible turbulent flows in LNG marine high pressure drop control valves was carried out by using the CFD-ACE from ESI-Group. In this study, flow characteristics of control valves with complex flow fields including cavitation effect were investigated. Simulation was performed on five models of control valve that had different orifice diameters of anti-trim and the size of valve. Comparing newly designed control valves for controling the occurrence of cavitation with the conventional valve, new valves showed a improved flow pattern with almost no cavitation.

The Performance Comparison Evaluation of Control Valve Shape (제어밸브 트림부 형태에 따른 성능 비교 평가)

  • Yoon, I.S.;Kim, Y.B.;Jang, H.;Hwang, J.H.;Kang, Y.M.
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2771-2776
    • /
    • 2008
  • AOV is fluid capacity and fluid pressure control in nuclear power plant with heating power plant. The control valve in order channel to control a high differential pressure developed in the form which is complicated and precise control form. Form the research which sees in order description below analyzed the performance comparison which follows in trim forms of the control valve with CFD. The Result, multi-stage trim are a fluid kinetic energy small will prevent damages of AOV.

  • PDF

A Study on the Localization of 1500lb High-Pressure Drop Control Valve for Boiler Feedwater Pump (보일러 급수펌프용 1500lb 고차압 제어밸브 국산화 개발에 관한 연구)

  • Lee, Kwon-Il;Jang, Hoon;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.19-24
    • /
    • 2022
  • We developed a prototype from the design of a trim, which is the most important in the localization development of a 1500 Ib high-differential pressure-control valve used for boiler feedwater, and measured the flow coefficient, the most basic design data for valves. The following conclusions were drawn. The comparison of the design values of the flow coefficients for the existing X-trim and the multicore trim designed for localization development showed that they were almost identical, and the X-trim value was slightly lower. The comparison of the X-trim and multicore trim based on the valve flow coefficient test showed that they were generally similar, indicating no problem with the design. In the future, we plan to compare and analyze the flow paths for the X-trim and multicore trim via flow analysis.

The characteristics in flow type of helical trim to unclear valve (원자력 밸브용 헬리컬트림의 유동 타입에 따른 특성)

  • Lee, Deok-Gu;Kim, Young-Bum;Yoon, In-Sik;Hwang, Ji-Hyuck;Kwon, Gap-Ju
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3074-3079
    • /
    • 2007
  • The conventional control valves have been used at the locations occurring high differential pressure and high temperature which causes cavitation, flashing, severe vibration due to abrupt flow change, and sudden pressure drop. Previous studies concerning control valves focused to prevent damage of valve trim due to the internal leak and low flow rate. The newly designed helical trim of control valve has been installed at the location of high pressure change and high temperature in a power plant, and operated for evaluation. It is confirmed that the new control valve developed in this study generates flow characteristics in comparison with previous helical trim of control valves.

  • PDF

The Effect of Divergence Angle on the Control Valve Trim Characteristics (확산각이 밸브 트림 특성에 미치는 영향)

  • Go, Tae-Sig;Kim, Kuisoon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.1
    • /
    • pp.32-39
    • /
    • 2013
  • The multi-stage control valve is one of the devices which controls cavitation and high pressure drop. To attain the high pressure drop, the conventional control valves adopted the multi-stage trim to avoid the occurrence of local cavitation in valves. This work studied the effect of divergence angle on the characteristics of multi-stage trim. Pressure drop and flow characteristics was calculated for the 1 passage of multi-staged trim by using the FLUENT 6.3.26. The result showed that the pressure drop is significantly influenced by the divergence angle of multi-stage trim. In addition, the pressure drop increased consistently as the Reynolds number and divergence angle increases.