• 제목/요약/키워드: 밸브 오버랩

검색결과 15건 처리시간 0.016초

흡기관 분사식 수소기관의 밸브오버랩 기간 변화에 따른 기관성능과 역화억제 가능성 (Feasibility of Backfire Control and Engine Performance with Different Valve Overlap Period of Hydrogen-Fueled Engine with External Mixture)

  • ;강준경;노기철;이종태;이제형
    • 한국수소및신에너지학회논문집
    • /
    • 제18권1호
    • /
    • pp.67-74
    • /
    • 2007
  • 고효율의 실현이 가능한 흡기관 분사식 수소기관의 역화 억제 가능성을 파악하고자 밸브 오버랩 기간의 변화에 따른 제반 기관성능과 역화가 발생되는 역화한계 당량비를 실험적으로 해석하였다. 실험에는 기계식 연속 가변밸브 타이밍 시스템이 부착된 연구용 수소기관을 사용하였다. 밸브 오버랩기간은 배기밸브 개폐시기를 고정하고 흡기밸브 캠의 위상각을 조절하여 변화시켰다. 해석결과 밸브 오버랩 기간의 감소에 따른 제반기관성능은 통상의 기관과 유사하지만 역화한계 당량비가 확장되어 초기 단계이지만 수소기관의 역화발생에 밸브오버랩 기간이 관여하는 것이 보였다. 기관 회전수 1600 rpm, WOT의 실험 조건에서 밸브 오버랩 기간을 $20^{\circ}CA$에서 $0^{\circ}CA$로 감소시킨 경우 역화한계당량비는 약 45% 정도 확장되고 정미 토크는 16% 감소했다.

스파크 점화 기관에서 밸브오버랩이 잔류가스율 변화에 미치는 영향 (Effect of Operating Conditions on the Residual Gas Fraction in an SI Engine)

  • 장진영;박용국;배충식;김우태
    • 한국자동차공학회논문집
    • /
    • 제10권6호
    • /
    • pp.11-18
    • /
    • 2002
  • Residual gas fraction in an engine cylinder affects engine performance, efficiency and emission characteristics. With high residual gas fractions, a flame speed and maximum combustion temperature are decreased and these are deeply related with combustion stability especially at idle and NOx emission at relatively high engine load. In this work, the residual gas fraction was calculated by an engine simulation code, which was validated by the experimental data (cylinder pressure and emissions) obtained from 4-cyliner spark ignition engine. A comparison between experimental and computational calculation results was made. The residual gas is generated mostly at low engine speed by the larger pressure difference between the intake and exhaust port. As the valve overlap duration was increased, the amount of residual gas in the cylinder, the amount of HC emission in the exhaust gas and the variation of power output increased.

밸브 오버랩 기간이 없는 흡기관 분사식 수소기관의 성능 및 역화특성 (Characteristics of Performance and Back-Fire for External Mixture Hydrogen Fueled Engine without Valve Overlap Period)

  • 이광주;강준경;;노기철;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제18권4호
    • /
    • pp.374-381
    • /
    • 2007
  • In order to verify the feasibility of expansion of back-fire limit equivalence ratio in the hydrogen-fueled engine with external mixture, the characteristics of performance and combustion are experimentally analyzed with change of intake/exhaust valve timings under the fixed valve overlap period of $0^{\circ}$ CA(non-valve overlap period). These characteristics are also tested for the change of exhaust valve closing timing while intake valve opening timing is fixed to clear the main cause of back-fire occurrence. As the results, the less valve overlap period center is retarded, the more back-fire limit equivalence ratio increases and back-fire does not occurred after TDC. In addition, it was shown that the control of back-fire is dependent on intake valve opening timing than valve overlap period.

밸브오버랩기관과 양정변화가 엔진특성에 미치는 영향에 관한 연구 (A study on the Valve Overlap Period and Valve Lift on the SI Engine Characteristics)

  • 황재원;김응혁;황화자;한정희;채재우
    • 한국자동차공학회논문집
    • /
    • 제9권1호
    • /
    • pp.28-36
    • /
    • 2001
  • In this study, a zero-dimensional two zone model is developed to investigate the effects of valve overlap period and valve lift on combustion and gas exchange process in SI engine. The simulation results show that the predicted data has good agreements with experimental ones. The useful information of combustion and gas exchange process such as residual gas fraction, cylinder pressure, mass flow rate and volumetric efficiency can be obtained and the effects of engine variables on combustion processes and performances can be evaluated.

  • PDF

동일열량공급하의 밸브오버랩기간 변화에 대한 역화억제 검토 (A Investigation of Back Fire Control with Valve Overlap Period Change In the Same Supply Energy)

  • 강준경;;노기철;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제18권3호
    • /
    • pp.348-355
    • /
    • 2007
  • To grasp a feasibility of back fire control by valve overlap period, back fire limit equivalence ratio was estimated with valve overlap period which has the same supply energy and positive intake pressure as valve overlap period $300^{\circ}\;CA$. As the result, it was shown that the smaller valve overlap period has the higher back fire limit equivalence ratio under valve overlap period $300^{\circ}\;CA$ as well as VOP $0^{\circ}\;CA$. This result means that expansion of back fire equivalence ratio by decreasing valve overlap period was caused by decrease of back flow duration of flame from in-cylinder to intake port than decrease of lower supply energy.

밸브오버랩기간 변화에 의한 흡기관 분사식 수소기관의 역화억제에 관한 연구 (A Study of Backfire Control in a Hydrogen-Fueled Engine with External Mixture Using Changes of Valve Overlap Period)

  • 강준경;;노기철;이종태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3311-3316
    • /
    • 2007
  • To analyze the influence of valve overlap period on a backfire occurrence, the single cylinder research engine with MCVVT(Mechanical Continuous Variable Valve Timing) system is developed and backfire limit equivalence ratio defined as fuel-air ratio equivalence ratio at which backfire occurs is examined according to various valve overlap period. The MCVVT is the system to control valve overlap period by mechanical device. It is estimated that the lower valve overlap period has the higher backfire limit equivalence ratio though the same energy is supplied. When the valve overlap period is changed from 30$^{circ}$ CA to 0$^{circ}$ CA, backfire limit equivalence ratio is increased 74%, approximately. It means that valve overlap period is concern in backfire occurrence, and may be one of the methods for controlling back fire occurred in a $H_2$ engine.

  • PDF

밸브 타이밍 변화가 3기통 LPG 엔진의 성능과 Idle 특성에 미치는 영향에 관한 연구 (A Study on the Effect of Valve Timing on the Performance and Idle characteristics of 3-Cylinder LPG Engine)

  • 이지근;이한풍;노병준
    • 한국자동차공학회논문집
    • /
    • 제5권3호
    • /
    • pp.27-34
    • /
    • 1997
  • The effects of the intake and exhaust valve timing to improve the engine performance in a spark ignition 3-cylinder LPG engine with a closed loop fuel supply system were studied. The engine torque and power have been measured using the 75kW EC-dynamometer while adjusting the optimal fuel consumption ratio with a solen- oid driver. As the results from this experiment, when intake valve opening is $12^{\circ}$ BTDC, intake valve closing is $36^{\circ}$ ABDC, exhaust valve opening is $12^{\circ}$ ATDC, and exhaust valve closing is $36^{\circ}$ BBDC respectively, the best torque characteristics in low and high speeds for a gives engine were obtained. And also we could find that the torque characteristics in low speeds were affected by the timing of exhaust valve open. An increased valve overlap by the EVC delay was ineffectual to the torque characte- ristics improvement in high speeds.

  • PDF

2단 과급시스템의 성능 인자 영향과 밀러 효과 극대화에 관한 연구 (Study on the Performance Factors of Two Stage Turbo-Charging System and Maximization of the Miller Cycle)

  • 백현민;서정훈;이원주;이지웅
    • 해양환경안전학회지
    • /
    • 제25권7호
    • /
    • pp.953-960
    • /
    • 2019
  • 밀러 사이클은 흡입밸브 닫힘 시기 조정을 통해 압축비를 줄임으로써 NOx의 저감과 연료소비율 개선이 동시에 가능하다는 점(밀러 효과)에서 디젤엔진에 매우 활발하게 채택되어지고 있다. 밀러 사이클은 흡입 밸브를 BDC 이전에 닫는 Early 밀러 방식과 BDC 이후에 닫는 Late 밀러 방식으로 나눌 수 있다. 저속에서는 체적효율의 증가를 꾀할 수 있는 Late Miller가 유리한 반면, 중속, 고속에서는 IVC 이후 BDC 까지의 피스톤 하강 과정의 흡기의 팽창에 따른 내부 온도 감소 효과 높은 Early 밀러가 유리하다. 따라서 Early 밀러와 Late 밀러의 효과를 고려하여 운전 조건에 적합한 밀러 구현 방법을 채택할 필요가 있다. 본 연구에서는 4행정 엔진을 대상으로 2단 과급 시스템의 적용하고 흡·배기 밸브 오버랩(valve overlap)의 감소를 통해 밀러 효과를 강화하는 과정과 밸브 조정 기구를 통한 밸브 조건의 변화가 밀러 효과에 미치는 영향을 고찰하였다. 결과적으로 2단과급과 밀러사이클, 밸브 오버랩 감소와 흡입밸브 리프트 증가를 통해 연료소 비율과 최고연소온도 감소의 효과를 확인하였다.

가솔린 기관의 공회전 시 밸브 타이밍 변경에 따른 잔류가스 유동 변화에 관한 해석적 연구 (Numerical Analysis of Flow Characteristic of Residual Gas due to Changes in Valve Timings during an Idle Operation in an SI Engine)

  • 이준호;김득상;백두성;조용석
    • 한국자동차공학회논문집
    • /
    • 제14권6호
    • /
    • pp.50-56
    • /
    • 2006
  • Residual gas fraction in a combustion process is very crucial to improve combustion and cyclic variations. Especially, the residual gas fraction is strongly affected by backflow of the residual gas during the valve overlap period in an idle operation. Therefore, it is one of the most interesting that valve timings can affect flow characteristics of gas exchange process, especially during idle operation. This analysis investigates residual gas fraction with respect to valve timing changes which is critical for combustion efficiency and engine performance. Flow characteristics of residual gas by changing intake and exhaust valve timing are calculated by CFD methodology during an idle operation in an SI engine. It is analyzed that retarded EVO and advanced IVO results in the increase of valve overlap period and consequently, residual gas fraction. Futhermore, changes in IVO have stronger effects on variation of residual gas fraction.

가솔린 엔진의 밸브타이밍 변화가 부분부하 조건에서 잔류가스량 및 연소특성에 미치는 영향 (Effect of Value Timing on Residual Gas Fraction and Combustion Characteristics at Part Load Condition in an SI Engine)

  • 김철수;송해박;이종화;유재석;조한승
    • 한국자동차공학회논문집
    • /
    • 제8권4호
    • /
    • pp.26-33
    • /
    • 2000
  • In-cylinde flow and mixture formation are key contributors to both idle stability and combustion stability at part load condition in SI engine. The real time measurements of air-fuel ration and in- cylinder residual gas fraction are particularly important to obtain a better understanding of the mechanisms for combustion and emissions especially during cold start and throttle transient condition. This paper reports the cycle resolved measurements of residual gas fraction and equivalence ration near speak plug with value timing change and their effects on combustion characteristics at part load. The results showed that the effect of intake value opening on the residual gas fraction was smaller than that of exhaust valve closing because of the decreases of exhaust gas reverse flow from exhaust port. The variation of equivalence ratio near spark plug increased with the increase of value overlap and it closely related with heat release rate and combustion stability

  • PDF