• Title/Summary/Keyword: 배치 모델

Search Result 835, Processing Time 0.024 seconds

Development of a Acoustic Acquisition Prototype device and System Modules for Fire Detection in the Underground Utility Tunnel (지하 공동구 화재재난 감지를 위한 음향수집 프로토타입 장치 및 시스템 모듈 개발)

  • Lee, Byung-Jin;Park, Chul-Woo;Lee, Mi-Suk;Jung, Woo-Sug
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.7-15
    • /
    • 2022
  • Since the direct and indirect damage caused by the fire in the underground utility tunnel will cause great damage to society as a whole, it is necessary to make efforts to prevent and control it in advance. The most of the fires that occur in cables are caused by short circuits, earth leakage, ignition due to over-current, overheating of conductor connections, and ignition due to sparks caused by breakdown of insulators. In order to find the cause of fire at an early stage due to the characteristics of the underground utility tunnel and to prevent disasters and safety accidents, we are constantly managing it with a detection system using image analysis and making efforts. Among them, a case of developing a fire detection system using CCTV-based deep learning image analysis technology has been reported. However, CCTV needs to be supplemented because there are blind spots. Therefore, we would like to develop a high-performance acoustic-based deep learning model that can prevent fire by detecting the spark sound before spark occurs. In this study, we propose a method that can collect sound in underground utility tunnel environments using microphone sensor through development and experiment of prototype module. After arranging an acoustic sensor in the underground utility tunnel with a lot of condensation, it verifies whether data can be collected in real time without malfunction.

Effect Analysis of Offshore Wind Farms on VHF band Communications (VHF 대역 통신에 대한 해상풍력 발전단지의 영향성 분석)

  • Oh, Seongwon;Park, Taeyong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.307-313
    • /
    • 2022
  • As the development of renewable energy expands internationally to cope with global warming and climate change, the share of wind power generation has been gradually increasing. Although wind farms can produce electric power for 24 h a day compared to solar power plants, Their interfere with the operation of nearby radars or communication equipment must be analyzed because large-scale wind power turbines are installed. This study analyzed whether a land radio station can receive sufficient signals when a ship sailing outside the offshore wind farm transmits distress signals on the VHF band. Based on the geographic information system digital map around the target area, wind turbine CAD model, and wind farm layout, the area of interest and wind farm were modeled to enable numerical analysis. Among the high frequency analysis techniques suitable for radio wave analysis in a wide area, a dedicated program applying physical optics (PO) and shooting and bouncing ray (SBR) techniques were used. Consequently, the land radio station could receive the electromagnetic field above the threshold of the VHF receiver when a ship outside the offshore wind farm transmitted a distress communication signal. When the line of sight between the ships and the land station are completely blocked, the strength of the received field decreases, but it is still above the threshold. Hence, although a wind farm is a huge complex, a land station can receive the electromagnetic field from the ship's VHF transmitter because the wave length of the VHF band is sufficiently long to have effects such as diffraction or reflection.

A Case Study on the Preliminary Study for Disaster Prevention of Storm Surge: Arrangement of Structures (폭풍해일 방재를 위한 사례적용을 통한 선행연구: 구조물 배치)

  • Young Hyun, Park;Woo-Sun, Park
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.335-345
    • /
    • 2022
  • Climate change is accelerating worldwide due to the recent rise in global temperature, and the intensity of typhoons is increasing due to the rise in seawater temperature around the Korean Peninsula. An increase in typhoon intensity is expected to increase not only wind damage, but also coastal damage caused by storm surge. Accordingly, in this study, a study of the method of reducing storm surges was conducted for the purpose of disaster prevention in order to respond to the increasing damage from storm surges. Storm surges caused by typhoons can be expected to be affected by structures located on the track of typhoon, and the effects of storm surges were studied by the eastern coast and the barrier island along the coast of the Gulf of Mexico in the United States. This study focused on this aspect and conducted related research, considering that storm surges in the southern coastal area of the Korean Peninsula could be directly or indirectly affected by Jeju Island, which is located on the track of typhoon. In order to analyze the impact of Jeju Island on storm surges, simulations were performed in various situations using a numerical analysis model. The results of using Jeju Island are thought to be able to be used to study new disaster prevention structures that respond to super typhoons.

Correlation Analysis between Wheelchair Multi-layer Headrest Foam Properties and Injury Index (Wheelchair Multi-layer headrest foam 특성과 상해지수간 상관관계 분석)

  • Sungwook Cho;Seungmin Ji;Seong S. Cheon
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.253-258
    • /
    • 2023
  • Although the development of transportation means has realized the right to mobility for the disabled who have difficulty in moving, it can be said that the improvement of the safety of passengers with disabilities that can occur in a car accident is lower than that of ordinary passenger seats. In particular, in the case of a rear-end collision that can occur suddenly, it is a reality that disabled passengers are vulnerable to head and neck injuries. Therefore, in this study, a multi-layer headrest foam that divides the headrest into three parts in the coronal plane was proposed to improve the head and neck injury index of disabled passengers in the vehicle in the event of a rear-end collision of a wheelchair transport vehicle. A range of stress scale factors was selected to give various compressive characteristics of the foam through low-speed rear-end collision analysis through a simple model, and GA optimization was performed by specifying the range as a parameter. Through the optimization result, the phase relationship between HIC and NIC was analyzed according to the compression characteristics of the layers. HIC responded most sensitively to the compression characteristics of the front layer and NIC responded to the compression characteristics of the mid layer, and the compression characteristics of the rear layer showed the lowest. A normal headrest and an optimized multi-layer headrest were placed in the validation model to analyze the low-speed rear-end collision sled test, and HIC and NIC were derived lower in the multi-layer headrest than in the general headrest. The compression behavior of the multi-layer headrest was also clearly shown, and it was verified that the multi-layer headrest was effective in improving the injury index of the head and neck compared to the general headrest.

The Influence of Elderly People's Health Promoting Behaviors on their Successful Aging: Focused on the Mediating Effect of Successful Aging Perception and Life Satisfaction (노인의 건강증진행위가 성공적 노후에 미치는 영향: 성공적 노화인식과 생활만족도 매개효과 중심)

  • Hong-Young Jang
    • Journal of Industrial Convergence
    • /
    • v.21 no.5
    • /
    • pp.109-122
    • /
    • 2023
  • The purpose of this study is to look into how elderly people's health promoting behaviors influence their successful aging, to realize how their perception of successful aging and their life satisfaction have the mediating effect on the path from health promotion behaviors to successful aging, and to find the significant influence of successful aging perception and life satisfaction on successful aging. This researcher conducted a questionnaire survey with elderly people using a senior welfare center in Gyeonggio-do, and analyzed 250 copies that. For data analysis, SPSS Win 25 was applied to conduct frequency analysis, descriptive statistics, t-test, one-way ANOVA, and correlation analysis. Mediating effect analysis was made to verify the causal relations between health promoting behaviors and successful aging, and to validate the mediating effect of successful aging perception and life satisfaction on the causal relations. As a result, elderly people's health promoting behaviors influenced their perception of successful aging, their life satisfaction, and their successful aging. Their perception of successful aging had the mediating effect on health promotional behaviors and successful aging, but life satisfaction did not so. This study has the following implications: it is necessary to train persons specializing in support for health promoting, to develop an efficient health promotional model and program, and to provide an opportunity of education. It is necessary to come up with a support policy in consideration of tangible or intangible factors. It is necessary to establish a policy in line with economic levels and health conditions of elderly people.

A Study of Optimal Lotion Manufacturing Process Containing Angelica gigas Nakai Extracts by Utilizing Experimental Design and Design Space Convergence Analysis (실험 설계와 디자인 스페이스 융합 분석을 통한 Angelica gigas Nakai 추출물을 함유한 로션 제조의 최적 공정 연구)

  • Pyo, Jae-Sung;Kim, Hyun-Jin;Yoon, Seon-hye;Park, Jae-Kyu;Kim, Kang-Min
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.3
    • /
    • pp.132-140
    • /
    • 2022
  • This study was conducted to identify the optimal lotion manufacturing conditions with decursin and decursinol angelate of Angelica gigas Nakai extraction. Lotion was confirmed that it had viscosity (5,208±112 cPs), assay (99.71±1.01%), and pH (5.62) for 3 months. The optimization of manufacturing conditions of mixing 4 for lotion formulation were made by 22+3 full factorial design. Mixing temperature (40-80℃) and mixing time (10-30 min) were used as independent variables with three responses(assay, pH, and weight variation) as critical quality attributes (CQAs). The model for assay and weight variation identified a proper fit having a determination coefficient of the regression equation (about 0.9) and a p-value less than 0.05. Estimated conditions for the optimal manufacturing process of lotion were 61.93℃ in mixing temperature and 15.85 min in mixing time. Predicted values at the mixing temperature (60℃) and mixing time (20 min) were 100.69% of assay, 5.57 of pH, and 98.07% of weight variation. In the verification of the actual measurement the obtained values showed 100.29±0.98% of assay, 5.57±0.02 of pH, and 98.27±0.89% of weight variation, respectively, in good agreement with predicted values.

Ship Collision Risk Assessment for Bridges (교량의 선박충돌위험도 평가)

  • Lee, Seong Lo;Bae, Yong Gwi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.1-9
    • /
    • 2006
  • An analysis of the annual frequency of collapse(AF) is performed for each bridge pier exposed to ship collision. From this analysis, the impact lateral resistance can be determined for each pier. The bridge pier impact resistance is selected using a probability-based analysis procedure in which the predicted annual frequency of bridge collapse, AF, from the ship collision risk assessment is compared to an acceptance criterion. The analysis procedure is an iterative process in which a trial impact resistance is selected for a bridge component and a computed AF is compared to the acceptance criterion, and revisions to the analysis variables are made as necessary to achieve compliance. The distribution of the AF acceptance criterion among the exposed piers is generally based on the designer's judgment. In this study, the acceptance criterion is allocated to each pier using allocation weights based on the previous predictions. To determine the design impact lateral resistance of bridge components such pylon and pier, the numerical analysis is performed iteratively with the analysis variable of impact resistance ratio of pylon to pier. The design impact lateral resistance can vary greatly among the components of the same bridge, depending upon the waterway geometry, available water depth, bridge geometry, and vessel traffic characteristics. More researches on the allocation model of AF and the determination of impact resistance are required.

Development of a Structural-Analysis Model for Blast-Resistant Design of Plant Facilities Subjected to Vapor-Cloud Explosion (증기운 폭발을 받는 플랜트 시설물의 내폭설계를 위한 구조 해석 모델 개발)

  • Bo-Young Choi;Seung-Hoon Lee;Han-Soo Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.103-110
    • /
    • 2024
  • In this study, a nonlinear dynamic analysis of a frame and single member, which reflect the characteristics of a plant facility, is performed using the commercial MIDAS GEN program and the results are analyzed. The general structural members and material properties of the plant are considered. The Newmark average-acceleration numerical-analysis method is applied to a plastic hinge to study material nonlinearity. The blast load of a vapor-cloud explosion, a representative plant explosion, is calculated, and nonlinear dynamic analysis is conducted on a frame and single member. The observed dynamic behavior is organized according to the ratio of natural period to load duration, maximum displacement, ductility, and rotation angle. The conditions and range under which the frame functions as a single member are analyzed and derived. NSFF with a beam-column stiffness ratio of 0.5 and ductility of 2.0 or more can be simplified and analyzed as FFC, whereas NSPF with a beam-column stiffness ratio of 0.5 and ductility of 1.5 or more can be simplified and analyzed as FPC. The results of this study can serve as guidelines for the blast-resistant design of plant facilities.

A sea trial method of hull-mounted sonar using machine learning and numerical experiments (기계학습 및 수치실험을 활용한 선체고정형소나 해상 시운전 평가 방안)

  • Ho-seong Chang;Chang-hyun Youn;Hyung-in Ra;Kyung-won Lee;Dea-hwan Kim;Ki-man Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.293-304
    • /
    • 2024
  • In this paper, efficient and reliable methodologies for conducting sea trials to evaluate the performance of hull-mounted sonar systems is discussed. These systems undergo performance verification during ship construction via sea trials. However, the evaluation procedures often lack detailed consideration of variabilities in detection performance due to seabed topography, seasonal factors. To resolve this issue, temperature and salinity structure data were collected from 1967 to 2022 using ARGO floats and ocean observers data. The paper proposes an efficient and reliable sea trial method incorporating Bellhop modeling. Furthermore, a machine learning model applying a Physics-Informed Neural Networks was developed using the acquired data. This model predicts the sound speed profile at specific points within the sea trial area, reflecting seasonal elements of performance evaluation. In this study, we predicted the seasonal variations in sound speed structure during sea trial operations at a specific location within the trial area. We then proposed a strategy to account for the variability in detection performance caused by seasonal factors, using results from Bellhop modeling.

A Study of Optimal Model for the Circuit Configuration of Korean Pulsatile Extracorporeal Life Support System (T-PLS) (한국형 박동식 생명구조장치(T-PLS) 순환회로를 위한 최적화 모델 연구)

  • Lim Choon Hak;Son Ho Sung;Lee Jung Joo;Hwang Znuke;Lee Hye Won;Kim Kwang Taik;Sun Kyung
    • Journal of Chest Surgery
    • /
    • v.38 no.10 s.255
    • /
    • pp.661-668
    • /
    • 2005
  • Background: We have hypothesized that, if a low resistant gravity-flow membrane oxygenator is used, then the twin blood sacs of TPLS can be located at downstream of the membrane oxyenator, which may double the pulse rate at a given pump rate and increase the pump output. The purpose of this study was to determine the optimal configuration for the ECLS circuits by using the concept of pulse energy and pump output. Material and Method: Animals were randomly assigned to 2 groups in a total cardiopulmonary bypass model. In the serial group, a conventional membrane oxygenator was located between the twin blood sacs. In the parallel group, the twin blood sacs were placed downstream of the gravity-flow membrane oxygenator. Energy equivalent pressure (EEP) and pump output were collected at pump-setting rates of 30, 40, and 50 BPM. Result: At the given pump-setting rate, the pulse rate was doubled in the parallel group. Percent changes of mean arterial pressure to EEP were $13.0\pm1.7,\; 12.0\pm1.9\;and\;7.6\pm0.9\%$ in the parallel group, and $22.5\pm2.4,\; 23.2\pm1.9,\;and\;21.8\pm1.4\%$ in the serial group at 30, 40, and 50 BPM of pump-setting rates. Pump output was higher in the parallel circuit at 40 and 50 BPM of pump-setting rates $(3.1\pm0.2,\;3.7\pm0.2L/min\;vs.\;2.2\pm0.1\;and\;2.5\pm0.1L/min,\;respectively,\;p=0.01)$. Conclusion: Either parallel or serial circuit configuration of the ECLS generates effective pulsatility. As for the pump out, the parallel circuit configuration provides higher flow than the serial circuit configuration.