DOI QR코드

DOI QR Code

A Case Study on the Preliminary Study for Disaster Prevention of Storm Surge: Arrangement of Structures

폭풍해일 방재를 위한 사례적용을 통한 선행연구: 구조물 배치

  • Young Hyun, Park (Costal Development and Energy Research Center, Korea Institute of Ocean Science & Technology) ;
  • Woo-Sun, Park (Costal Development and Energy Research Center, Korea Institute of Ocean Science & Technology)
  • 박영현 (한국해양과학기술원 연안개발에너지 연구센터) ;
  • 박우선 (한국해양과학기술원 연안개발에너지 연구센터)
  • Received : 2022.11.19
  • Accepted : 2022.12.25
  • Published : 2022.12.31

Abstract

Climate change is accelerating worldwide due to the recent rise in global temperature, and the intensity of typhoons is increasing due to the rise in seawater temperature around the Korean Peninsula. An increase in typhoon intensity is expected to increase not only wind damage, but also coastal damage caused by storm surge. Accordingly, in this study, a study of the method of reducing storm surges was conducted for the purpose of disaster prevention in order to respond to the increasing damage from storm surges. Storm surges caused by typhoons can be expected to be affected by structures located on the track of typhoon, and the effects of storm surges were studied by the eastern coast and the barrier island along the coast of the Gulf of Mexico in the United States. This study focused on this aspect and conducted related research, considering that storm surges in the southern coastal area of the Korean Peninsula could be directly or indirectly affected by Jeju Island, which is located on the track of typhoon. In order to analyze the impact of Jeju Island on storm surges, simulations were performed in various situations using a numerical analysis model. The results of using Jeju Island are thought to be able to be used to study new disaster prevention structures that respond to super typhoons.

최근 지구 온도 상승에 따라 전 세계적으로 기후변화가 가속화되고 있으며, 한반도 주변 해역의 해수 온도 상승으로 태풍의 강도가 점점 더 증가하고 있다. 태풍 강도의 증가는 바람에 의한 피해뿐만 아니라 폭풍해일에 의한 연안 지역의 피해도 증가시킬 것으로 예상된다. 이에 따라 본 연구에서는 증가하고 있는 폭풍해일의 피해에 대응하기 위해 방재를 목적으로 폭풍해일 저감 방법에 관한 연구를 수행하였다. 태풍에 의해 해상에서 발생한 폭풍해일은 태풍의 이동 경로상에 위치한 구조물에 의해 영향을 받을 것으로 예상할 수 있으며, 미국에서는 동부 해안과 멕시코만의 해안을 따라 위치한 barrier island에 의한 폭풍해일의 영향을 연구한 사례가 있다. 본 연구는 이러한 부분에 착안하여 태풍의 경로상에 위치한 제주도에 의해 한반도 남해안 지역의 폭풍해일이 직간접적으로 영향을 받을 수 있다고 생각하여 관련 연구를 수행하였다. 제주도가 폭풍해일에 미치는 영향을 분석하기 위해 수치해석 모델을 사용하여 다양한 상황에 대해 시뮬레이션을 수행하였다. 제주도를 활용한 결과는 초대형 태풍에 대응하는 신형 방재구조물 연구에 활용될 수 있을 것으로 생각된다.

Keywords

Acknowledgement

이 성과는 정부(해양수산부)의 재원으로 한국해양과학기술원의 지원을 받아 수행된 연구임(PEA0031, 해양에너지 및 항만 해양 구조물 실용화 기술개발), (PEA0033, 해양쓰레기 재활용 항만 구조물 수명연장 기술개발).

References

  1. Bijker, W.E. (2002). The oosterschelde storm surge barrier: A test case for dutch water technology, management, and politics. Technology and Culture, 43(3), 569-584. https://doi.org/10.1353/tech.2002.0104
  2. Black, P.G. (1983). Ocean temperature changes induced by tropical cyclones. The Pennsylvania State University.
  3. Bol, R. (2005). 38. Operation of the 'Maeslant Barrier': (storm surge barrier in the Rotterdam New Waterway). Flooding and Environmental Challenges for Venice and Its Lagoon: State of Knowledge, Cambridge University Press, UK.
  4. Dickey, T., Frye, D., McNeil, J., Manov, D., Nelson, N., Sigurdson, D., Jannasch, H., Siegel, D., Michaels, T. and Johnson, R. (1998). Upper-ocean temperature response to Hurricane Felix as measured by the Bermuda Testbed Mooring. Monthly Weather Review, 126(5), 1195-1201. https://doi.org/10.1175/1520-0493(1998)126<1195:UOTRTH>2.0.CO;2
  5. Guarino, A. (2014). Venice: master of water [Built Environment Venice Flood Barrier]. Engineering & Technology, 9(8), 44-46. https://doi.org/10.1049/et.2014.0804
  6. Hasselmann, K., Barnett, T.P., Bouws, E., Carlson, H., Cartwright, D.E., Enke, K., Ewing, J.A., Gienapp, H., Hasselmann, D.E., Kruseman, P., Meerburg, A., Muller, P., Olbers, D.J., Richter, K., Sell, W. and Walden, H. (1973). Measurements of windwave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Ergaenzungsheft zur Deutschen Hydrographischen Zeitschrift, Reihe A.
  7. Hillen, M.M., Jonkman, S.N., Kanning, W., Kok, M., Geldenhuys, M., Vrijling, J.K. and Stive, M.J.F. (2010) Coastal Defence Cost Estimates. Case Study of the Netherlands, New Orleans and Vietnam, TU Delft, Netherlands.
  8. Kang, J.H., Park, S.J., Moon, S.R. and Yoon, J.T. (2009). Effects of typhoon's characteristics on the storm surge at Gyeongnam Coastal Zone. Journal of Korean Society of Coastal and Ocean Engineers, 21(1), 1-14 (in Korean).
  9. Komen, G.J., Hasselmann, K. and Hasselmann, S. (1984). On the existence of a fully developed wind-sea spectrum. J. Phys. Oceanogr., 14, 1271-1285. https://doi.org/10.1175/1520-0485(1984)014<1271:OTEOAF>2.0.CO;2
  10. Korea Hydrographic and Oceanographic Administration (2011). Mapping and Distribution of Coastal Inundation Maps-Final report (in Korean).
  11. Lee, B.S., Haran, M. and Keller, K. (2017). Multidecadal scale detection time for potentially increasing Atlantic storm surges in a warming climate. Geophysical Research Letters, 44(20), 10-617.
  12. Luettich, Jr R., Westerink, J. and Scheffner, N.W. (1992). ADCIRC: An advanced three-dimensional circulation model for shelves, coasts, and estuaries. Report 1. Theory and methodology of ADCIRC-2DDI and ADCIRC-3DL. DTIC Document, USA.
  13. Mei, W., Xie, S.P., Primeau, F., McWilliams, J.C. and Pasquero, C. (2015). Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures. Science Advances, 1(4), e1500014.
  14. Moon, S.R., Kang, J.W., Park, S.J. and Shim, J.S. (2012). Prediction of design water level due to storm surge at the Seogwipo Coastal Zone. Journal of Korean Society of Hazard Mitigation, 12(2), 255-261 (in Korean). https://doi.org/10.9798/KOSHAM.2012.12.2.255
  15. Park, Y.H. and Park, W.S. (2021). Characteristics of storm surge by forward speed of typhoon in the south coast of Korea, Journal of Korean Society of Coastal and Ocean Engineering, 33(5), 187-194 (in Korean). https://doi.org/10.9765/KSCOE.2021.33.5.187
  16. Park, Y.H. and Suh, K.D. (2012). Variation of storm surge caused by shallow water depths and extreme tidal range. Ocean Engineering, 55, 44-51. https://doi.org/10.1016/j.oceaneng.2012.07.032
  17. Sebastian, A., Proft, J., Dietrich, J.C., Du, W., Bedient, P.B. and Dawson, C.N. (2014). Characterizing hurricane storm surge behavior in Galveston Bay using the SWAN + ADCIRC model. Coastal Engineering, 88, 171-181. https://doi.org/10.1016/j.coastaleng.2014.03.002
  18. Smith, J.M. (1991). Wind-wave generation on restricted fetches. U.S. Army Engineer Waterways Experiment Station, Misc. Paper CERC-91-2, USA.
  19. Sverdrup, H.U. and Munk, W.H. (1947). Wind, sea, and swell: Theory of relations for forecasting. U.S. Navy Hydrographic Office Tech. Rep. 1, USA.
  20. Westerink, J.J., Luettich, R.A., Baptists, A.M., Scheffner, N.W. and Farrar, P. (1992). Tide and storm surge predictions using finite element model. Journal of Hydraulic Engineering, 118(10), 1373-1390. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:10(1373)
  21. Youn, D. and Park, Y.H. (2021). Climate change: Characteristics of Storms around Korea. Journal of Coastal Research, 114(SI), 256-260.
  22. Yoon, J.J., Shim, J.S., Woo, C.J. and Kim, C.I. (2014). Hydraulic experiment of dynamic behavior characteristic from new developed sinkable floating storm surge barrier. A Proceeding of Conf. on Korean Society of Coastal Disaster Prevention, 67-68 (in Korean).