• Title/Summary/Keyword: 배출 시나리오

Search Result 239, Processing Time 0.032 seconds

Green-house GAS Reduction Through the Environmental Policy Mixes Both Environmental Trading and Carbon Taxes (온실가스 감축을 위한 배출권거래제와 탄소세의 정책혼합 효과 분석)

  • Lim, Jae-Ku;Kim, Jeong-In
    • Environmental and Resource Economics Review
    • /
    • v.12 no.2
    • /
    • pp.245-274
    • /
    • 2003
  • This paper analyzes the economic and environmental impacts of domestic policy to reduce greenhouse gas emissions by focusing on carbon tax, domestic emissions trading and the mixture of these policies. By utilizing a dynamic CGE model, KORTEM, this study shows that the economic cost under carbon tax is projected to be higher than that under emission trading. It is because under carbon tax scheme each emitter in economy must meet its emission target regardless of the abatement cost. On the other hand, emission trading allows emitters to reduce the marginal cost of abatement through trading of emission permits. In designing policy portfolio to address the climate change problem in Korea, therefore, this paper proposes the introduction of domestic emission trading scheme as the main domestic policy Instrument.

  • PDF

A Study on the Effect of the Urban Regeneration Project on the Reduction of Carbon Emission - A Case Study of Jeonju Test-Bed - (도시재생사업 적용에 따른 탄소저감 효과 - 전주TB지역을 대상으로 -)

  • Park, Kiyong;Lee, Sangeun;Park, Heekyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.65-74
    • /
    • 2016
  • This study mainly focuses on urban regeneration project as a countermeasure to resolve climate change issues by analyzing the carbon-reduction effect of Jeonju test-bed cases. First, an urban regeneration project is designed for city, Jeonju by analyzing its environmental problems and potential improvement. Then, carbon emission and reduction amounts are evaluated for different businesses and scenarios. Carbon emission sources are classified according to a standard suggested by IPCC, and the emissions are calculated by various standard methods. The result shows that carbon emission amount in Jeonju test-bed is 102,149 tCO2eq. The fact that 70% of the emission from energy sector originates from buildings implies that urban regeneration projects can concentrate on building portions to effectively reduce carbon emission. It is also projected carbon emission will decrease by 3,826tCo2eq in 2020 compared to 2011, reduction mainly based on overall population and industry shrinkage. When urban regeneration projects are applied to 5 urban sectors (urban environment, land use, green transportation, low carbon energy, and green buildings) total of 10,628tCO2eq is reduced and 4,857tCO2 (=15.47%) when only applied to the green building sector. Moreover, different carbon reduction scenarios are set up to meet each goal of different sectors. The result shows that scenario A, B, and C each has 5%, 11%, and 15% of carbon reduction, respectively. It is recommended to apply scenario B to achieve 11% reduction goal in a long term. Therefore, this research can be a valuable guideline for planning future urban regeneration projects and relative policies by analyzing the present urban issues and suggesting improvement directions.

Scenario Analysis, Technology Assessment, and Policy Review for Achieving Carbon Neutrality in the Energy Sector (에너지 부문의 탄소중립 달성을 위한 국내외 시나리오 분석 및 기술, 정책현황 고찰)

  • Han Saem Park;Jae Won An;Ha Eun Lee;Hyun Jun Park;Seung Seok Oh;Jester Lih Jie Ling;See Hoon Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.496-504
    • /
    • 2023
  • Countries worldwide are striving to find new sources of sustainable energy without carbon emission due to the increasing impact of global warming. With the advancement of the fourth industrial revolution on a global scale, there has been a substantial rise in energy demand. Simultaneously, there is a growing emphasis on utilizing energy sources with minimal or zero carbon content to ensure a stable power supply while reducing greenhouse gas emissions. In this comprehensive overview, a comparative analysis of carbon reduction policies of government was conducted. Based on international carbon neutrality scenarios and the presence of remaining thermal power generation, it can be categorized into two types: "Rapid" and "Safety". For the domestic scenario, the projected power demand and current greenhouse gas emissions in alignment with "The 10th Basic Plan for Electricity Supply and Demand" was examined. Considering all these factors, an overview of the current status of carbon neutrality technologies by focusing on the energy sector, encompassing transitions, hydrogen, transportation and carbon capture, utilization, and storage (CCUS) was offered followed by summarization of key technological trends and government-driven policies. Furthermore, the central aspects of the domestic carbon reduction strategy were proposed by taking account of current mega trends in the energy sector which are highlighted in international scenario analyses.

DNDC Modeling for Greenhouse Gases Emission in Rice Paddy of South Korea and the Effect of Flooding Management Change and RCP 8.5 Scenario (RCP 8.5 시나리오와 관수 기법의 변화에 따른 논에서의 온실가스 배출 변화의 DNDC 모델을 통한 모의)

  • Min, Hyungi;Kim, Min-Suk;Kim, Jeong-Gyu;Hwang, Wonjae
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.3
    • /
    • pp.189-198
    • /
    • 2018
  • In 21th century, climate change is one of the fundamental issue. Greenhouses gases are pointed as the main cause of climate change. Soil play a vital role of carbon sink and also can be a huge source of greenhouse gases defense on the management. Flux of greenhouse gases is not the only factor can be changed by climate change. Climate change can alter proper management. Temperature change will modify crop planting and harvesting date. Other management skills like fertilizer, manure, irrigation, tillage can also be changed with climate change. In this study, greenhouse gases emission in rice paddy in South Korea is simulated with DNDC model from 2011 - 2100 years. Climate for future is simulated with RCP 8.5 scenario for understanding the effect of climate change to greenhouse gases emission. Various rice paddy flooding techniques were applied to find proper management for future management. With conventional flooding technique, climate change increase greenhouse gases emission highly. Marginal flooding can decrease large amount of greenhouse gases emission and even it still increases with climate change, it has the smallest increasing ratio. If we suppose the flooding technique will change for best grain yield, dominant flooding technique will be different from conventional flooding to marginal flooding. The management change will reduce greenhouse gases emission. The result of study shows the possibility to increase greenhouse gases emission with climate change and climate change adaptation can show apposite result compared without the adaptation.

Estimation of Greenhouse Gas Emissions (GHG) Inventory and Reduction Plans for Low Carbon Green Campus in Daegu University (저탄소 그린캠퍼스 조성을 위한 온실가스 인벤토리 구축 및 감축잠재량 분석 - 대구대학교를 중심으로)

  • Jeong, YeongJin;Li, KaiChao;Kim, TaeOh;Hwang, InJo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.7
    • /
    • pp.506-513
    • /
    • 2014
  • The objective of this study is to establish the greenhouse gases (GHG) inventories and estimate the GHG reduction plans for Daegu University from 2009 to 2011. The annual average of GHG emissions in Daegu University was estimated to be 19,413 ton $CO_2$ eq during the study period. Emissions of electricity usage in Scope 2 most contributed about 55.4% of the total GHG emissions. Also, GHG emissions of Scope 2, Scope 1, and Scope 3 contributed 60.4%, 22.6%, and 17.0%, respectively. In order to estimate reduction potential of GHG, the Long-range Energy Alternatives Planning (LEAP) model was calculated using three scenarios such as sensor installation, LED replacement, and solar facility. The GHG will be reduced by 1,656 ton $CO_2$ eq for LED scenario, by 1,041 ton $CO_2$ eq for sensor scenario, and by 737 ton $CO_2$ eq for solar scenario compared to 2020 business as usual (BAU). Therefore, the total GHG emissions in 2020 apply three scenarios can be reduced by 15% compared with 2020 BAU.

A Case Study on the Emission Impact of Land Use Changes using Activity-BAsed Traveler Analyzer (ABATA) System (활동기반 통행자분석시스템(ABATA)을 이용한 토지이용변화에 따른 차량 배기가스 배출영향 사례 분석)

  • Eom, Jin Ki;Lee, Kwang-Sub
    • Journal of Cadastre & Land InformatiX
    • /
    • v.53 no.1
    • /
    • pp.21-36
    • /
    • 2023
  • Activity-based modeling systems have increasingly been developed to address the limitations of widely used traditional four-step transportation demand forecasting models. Accordingly, this paper introduces the Activity-BAsed Traveler Analyzer (ABATA) system. This system consists of multiple components, including an hourly total population estimator, activity profile constructor, hourly activity population estimator, spatial activity population estimator, and origin/destination estimator. To demonstrate the proposed system, the emission impact of land use changes in the 5-1 block Sejong smart city is evaluated as a case study. The results indicate that the land use with the scenario of work facility dispersed plan produced more emissions than the scenario of work facility centralized plan due to the longer travel distance. The proposed ABATA system is expected to provide a valuable tool for simulating the impacts of future changes in population, activity schedules, and land use on activity populations and travel demands.

Study of the Flood Vulnerability Assessment on 5 River Basins in Korea under Climate Change (국내 5대강 유역의 기후변화에 의한 홍수 취약성 평가에 관한 연구)

  • Lee, Moon-Hwan;Lee, Byung-Ju;Jeong, Il-Won;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.47-51
    • /
    • 2010
  • 본 연구의 목적은 기후변화에 따른 홍수 취약성 평가 방법을 제안하고 미래 기후시나리오를 이용하여 국내 5대강 유역에 대해 홍수취약지역을 시 공간적으로 평가하는 데에 있다. 이에 현 기후상태의 홍수 취약성을 평가하고자 유역의 지형, 인문 사회 정보를 수집하였으며, 관측 기상, 수문자료와 수문모형 모의로부터 유역평균강수량 및 유역별 유출량을 산정하였다. 이상의 자료를 토대로 홍수와 관련된 취약성 지표를 선정 및 산정하여 현재 기후상태(1971~2000년)에서의 홍수취약성을 평가하였다. 또한 기후변화 영향을 고려하기 위해 3개의 온실가스배출시나리오를 기반으로 생산된 13GCMs 별 미래 기후시나리오 자료를 수집하였으며, 3개의 유출모형에 적용, 다수의 유출시나리오를 생산하여 현재 기후상태(1971~2000년) 대비 미래 세기간 S1(2011~2040년), S2(2041~2070년), S3(2071~2100년)의 홍수 취약성을 평가하였다. 현재 기후상태에 따른 홍수취약지역을 평가한 결과 대체로 한강 중 하류지역과 영 섬강 하류 지역에서 높게 나타났으며, 낙동강 중 상류유역은 상대적으로 낮은 것으로 나타났다. 또한 기후변화시나리오를 적용할 경우 취약지역의 공간적인 분포는 기준기간과 유사했으나, 대부분의 유역에서 심도는 증가할 것으로 나타났다. 특히 낙동강 권역에서 가장 크게 변할 것으로 분석되었는데 이는 하천의 적응능력이 작아 상대적으로 기상 수문지표의 변화에 더욱 민감하게 반응하는 것으로 판단된다.

  • PDF

Analysis of input factor variability for scenario analysis of urban water resource real-time cyper physical system simulator (도시수자원 실시간 사이버물리시스템 시뮬레이터의 시나리오 분석을 위한 입력인자 변동성 분석)

  • Yoo, Do Guen;Chung, Gunhui;Ok, Wonsu;Jun, Hwandon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.381-381
    • /
    • 2022
  • 본 연구에서는 실시간적으로 계측, 수집된 자료를 이용하여 도시지역 물순환 전 과정에 대한 개별 물리모델 구동을 실시하고, 수자원의 양적인 흐름을 연계하여 표출하는 도시 수자원 사이버 물리시스템(CPS) 시뮬레이터에 활용되는 입력인자 변동성 분석을 실시하였다. 도시 수자원 실시간 CPS 시뮬레이터의 시나리오 분석을 위한 변동입력인자는 취수량, 타 배수지 구역 공급량, 대상지역 수용가 사용량 변화, 오수전환률 및 오수배출 지연시간 등으로 설정하였으며, 변동입력인자 변화모의를 위한 발현가능한 시나리오를 구축하고, 분석결과를 정량화하여 제시하였다. 본 연구에서 활용된 발현가능한 시나리오는 가뭄 등 취수제한상황에 따른 양적인 공급 흐름모의, 수용가 물 사용 패턴 변화(예, 코로나로 인한 비대면 재택 근무 증가 등)에 의한 상수, 오수변화량 모의 등으로 설정되었다. 분석 결과 다양한 입력인자의 변화에 따른 도시수자원 흐름변화에 영향을 주는 구성요소의 파악과 정성, 정량적 영향을 직관적, 정량적으로 평가할 수 있음을 확인하였다. 도출된 변동성 평가 결과는 설정된 시나리오가 현실화될 경우 효과성 높은 대응책을 마련하는데 활용이 가능하다.

  • PDF

Greenhouse Gas Mitigation Policies and National Emission Targets of Korea (온실가스 감축을 위한 정책과 우리나라의 부문별 감축여건)

  • Kim, Ho-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.9
    • /
    • pp.809-817
    • /
    • 2010
  • Reducing emissions across all sectors requires a well-designed policies tailored to fit specific national circumstances. And every climate policymaker would like to have an accurate method of assessing the quantitative impacts of future policies to address GHG-related problems. Estimates of future changes in a nation's GHG emissions, the expected environmental impacts of future energy sector developments, and the potential costs and benefits of different climate technology and mitigation policy options are desirable inputs to policy making. Various mitigation analysis and modeling approaches helped to fill the needs for these kinds of information, and as such has been an important part of national mitigation policy making in many countries for most of two decades. This paper provides a overview of GHG mitigation policies and mitigation analysis, and sectoral mitigation circumstances and potentials.

Development Strategy for New Climate Change Scenarios based on RCP (온실가스 시나리오 RCP에 대한 새로운 기후변화 시나리오 개발 전략)

  • Baek, Hee-Jeong;Cho, ChunHo;Kwon, Won-Tae;Kim, Seong-Kyoun;Cho, Joo-Young;Kim, Yeongsin
    • Journal of Climate Change Research
    • /
    • v.2 no.1
    • /
    • pp.55-68
    • /
    • 2011
  • The Intergovernmental Panel on Climate Change(IPCC) has identified the causes of climate change and come up with measures to address it at the global level. Its key component of the work involves developing and assessing future climate change scenarios. The IPCC Expert Meeting in September 2007 identified a new greenhouse gas concentration scenario "Representative Concentration Pathway(RCP)" and established the framework and development schedules for Climate Modeling (CM), Integrated Assessment Modeling(IAM), Impact Adaptation Vulnerability(IAV) community for the fifth IPCC Assessment Reports while 130 researchers and users took part in. The CM community at the IPCC Expert Meeting in September 2008, agreed on a new set of coordinated climate model experiments, the phase five of the Coupled Model Intercomparison Project(CMIP5), which consists of more than 30 standardized experiment protocols for the shortterm and long-term time scales, in order to enhance understanding on climate change for the IPCC AR5 and to develop climate change scenarios and to address major issues raised at the IPCC AR4. Since early 2009, fourteen countries including the Korea have been carrying out CMIP5-related projects. Withe increasing interest on climate change, in 2009 the COdinated Regional Downscaling EXperiment(CORDEX) has been launched to generate regional and local level information on climate change. The National Institute of Meteorological Research(NIMR) under the Korea Meteorological Administration (KMA) has contributed to the IPCC AR4 by developing climate change scenarios based on IPCC SRES using ECHO-G and embarked on crafting national scenarios for climate change as well as RCP-based global ones by engaging in international projects such as CMIP5 and CORDEX. NIMR/KMA will make a contribution to drawing the IPCC AR5 and will develop national climate change scenarios reflecting geographical factors, local climate characteristics and user needs and provide them to national IAV and IAM communites to assess future regional climate impacts and take action.