• Title/Summary/Keyword: 배정도실수

Search Result 10, Processing Time 0.026 seconds

Newton-Raphson's Double Precision Reciprocal Using 32 bit multiplier (32 비트 곱셈기를 사용한 뉴톤-랍손 배정도실수 역수 계산기)

  • Cho, Gyeong-Yeon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.6
    • /
    • pp.31-37
    • /
    • 2013
  • Modern graphic processors, multimedia processors and audio processors mostly use floating-point number. High-level language such as C and Java use both single precision and double precision floating-point number. In this paper, an algorithm which computes the reciprocal of double precision floating-point number using a 32 bit multiplier is proposed. It divides the mantissa of double precision floating-point number to upper part and lower part, and calculates the reciprocal of the upper part with Newton-Raphson algorithm. And it computes the reciprocal of double precision floating-point number with calculated upper part reciprocal as the initial value. Since the number of multiplications performed by the proposed algorithm is dependent on the mantissa of floating-point number, the average number of multiplications per an operation is derived from some reciprocal tables with varying sizes.

Goldschmidt's Double Precision Floating Point Reciprocal Computation using 32 bit multiplier (32 비트 곱셈기를 사용한 골드스미트 배정도실수 역수 계산기)

  • Cho, Gyeong-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3093-3099
    • /
    • 2014
  • Modern graphic processors, multimedia processors and audio processors mostly use floating-point number. Meanwhile, high-level language such as C and Java uses both single-precision and double precision floating-point number. In this paper, an algorithm which computes the reciprocal of double precision floating-point number using a 32 bit multiplier is proposed. It divides the mantissa of double precision floating-point number to upper part and lower part, and calculates the reciprocal of the upper part with Goldschmidt's algorithm, and computes the reciprocal of double precision floating-point number with calculated upper part reciprocal as the initial value is proposed. Since the number of multiplications performed by the proposed algorithm is dependent on the mantissa of floating-point number, the average number of multiplications per an operation is derived from some reciprocal tables with varying sizes.

The improved Goldschmidt floating point reciprocal algorithm (개선한 Goldschmidt 부동소수점 역수 알고리즘)

  • 한경헌;최명용;김성기;조경연
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.247-250
    • /
    • 2004
  • Goldschmidt 알고리즘에 의한 부동소수점 1.f2의 역수는 q=NK1K2....Kn (Ki=1+Aj, j=2i)이다. 본 논문에서는 N과 A 값을 1.f2의 값에 따라서 선정하고 Aj의 값이 유효자리수의 반이하 값을 가지면 연산을 종료하는 개선된 Goldschmidt 부동소수점 역수 알고리즘을 제안한다. 1.f2가 1.01012보다 작으면 N=2-1.f2, A=1.f2-1로 하며, 1.01012보다 크거나 같으면 N=2-0.lf2, A=1-0.lf2로 한다. 한편 Goldschmidt 알고리즘은 곱셈을 반복해서 수행하므로 계산 오류가 누적이 된다. 이러한 누적 오류를 감안하면 배정도실수 역수에서는 2-57, 단정도실수 역수에서는 2-28의 유효자리수까지 연산해야 한다. 따라서 Aj가 배정도실수 역수에서는 2-29, 단정도실수 역수에서는 2-14 보다 작아지면 연산을 종료한다. 본 논문에서 제안한 개선한 Goldschmidt 역수 알고리즘은 N=2-0.1f2, A=1-0.lf2로 계산하는 종래 알고리즘과 비교하여 곱셈 연산 회수가 배정도실수 역수는 22%, 단정도실수 역수는 29% 감소하였다. 본 논문의 연구 결과는 테이블을 사용하는 Goldschmidt 역수 알고리즘에 적용해서 연산 시간을 줄일 수 있다.

  • PDF

Error Corrected K'th order Goldschmidt's Floating Point Number Division (오차 교정 K차 골드스미트 부동소수점 나눗셈)

  • Cho, Gyeong-Yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2341-2349
    • /
    • 2015
  • The commonly used Goldschmidt's floating-point divider algorithm performs two multiplications in one iteration. In this paper, a tentative error corrected K'th Goldschmidt's floating-point number divider algorithm which performs K times multiplications in one iteration is proposed. Since the number of multiplications performed by the proposed algorithm is dependent on the input values, the average number of multiplications per an operation in single precision and double precision divider is derived from many reciprocal tables with varying sizes. In addition, an error correction algorithm, which consists of one multiplication and a decision, to get exact result in divider is proposed. Since the proposed algorithm only performs the multiplications until the error gets smaller than a given value, it can be used to improve the performance of a divider unit. Also, it can be used to construct optimized approximate reciprocal tables.

An Improved Newton-Raphson's Reciprocal and Inverse Square Root Algorithm (개선된 뉴톤-랍손 역수 및 역제곱근 알고리즘)

  • Cho, Gyeong-Yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.1
    • /
    • pp.46-55
    • /
    • 2007
  • The Newton-Raphson's algorithm for finding a floating point reciprocal and inverse square root calculates the result by performing a fixed number of multiplications. In this paper, an improved Newton-Raphson's algorithm is proposed, that performs multiplications a variable number. Since the number of multiplications performed by the proposed algorithm is dependent on the input values, the average number of multiplications per an operation is derived from many reciprocal and inverse square tables with varying sizes. The superiority of this algorithm is proved by comparing this average number with the fixed number of multiplications of the conventional algorithm. Since the proposed algorithm only performs the multiplications until the error gets smaller than a given value, it can be used to improve the performance of a reciprocal and inverse square root unit. Also, it can be used to construct optimized approximate tables. The results of this paper can be applied to many areas that utilize floating point numbers, such as digital signal processing, computer graphics, multimedia, scientific computing, etc.

A Variable Latency Goldschmidt's Floating Point Number Square Root Computation (가변 시간 골드스미트 부동소수점 제곱근 계산기)

  • Kim, Sung-Gi;Song, Hong-Bok;Cho, Gyeong-Yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.1
    • /
    • pp.188-198
    • /
    • 2005
  • The Goldschmidt iterative algorithm for finding a floating point square root calculated it by performing a fixed number of multiplications. In this paper, a variable latency Goldschmidt's square root algorithm is proposed, that performs multiplications a variable number of times until the error becomes smaller than a given value. To find the square root of a floating point number F, the algorithm repeats the following operations: $R_i=\frac{3-e_r-X_i}{2},\;X_{i+1}=X_i{\times}R^2_i,\;Y_{i+1}=Y_i{\times}R_i,\;i{\in}\{{0,1,2,{\ldots},n-1} }}'$with the initial value is $'\;X_0=Y_0=T^2{\times}F,\;T=\frac{1}{\sqrt {F}}+e_t\;'$. The bits to the right of p fractional bits in intermediate multiplication results are truncated, and this truncation error is less than $'e_r=2^{-p}'$. The value of p is 28 for the single precision floating point, and 58 for the doubel precision floating point. Let $'X_i=1{\pm}e_i'$, there is $'\;X_{i+1}=1-e_{i+1},\;where\;'\;e_{i+1}<\frac{3e^2_i}{4}{\mp}\frac{e^3_i}{4}+4e_{r}'$. If '|X_i-1|<2^{\frac{-p+2}{2}}\;'$ is true, $'\;e_{i+1}<8e_r\;'$ is less than the smallest number which is representable by floating point number. So, $\sqrt{F}$ is approximate to $'\;\frac{Y_{i+1}}{T}\;'$. Since the number of multiplications performed by the proposed algorithm is dependent on the input values, the average number of multiplications per an operation is derived from many reciprocal square root tables ($T=\frac{1}{\sqrt{F}}+e_i$) with varying sizes. The superiority of this algorithm is proved by comparing this average number with the fixed number of multiplications of the conventional algorithm. Since the proposed algorithm only performs the multiplications until the error gets smaller than a given value, it can be used to improve the performance of a square root unit. Also, it can be used to construct optimized approximate reciprocal square root tables. The results of this paper can be applied to many areas that utilize floating point numbers, such as digital signal processing, computer graphics, multimedia, scientific computing, etc.

A Variable Latency Goldschmidt's Floating Point Number Divider (가변 시간 골드스미트 부동소수점 나눗셈기)

  • Kim Sung-Gi;Song Hong-Bok;Cho Gyeong-Yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.380-389
    • /
    • 2005
  • The Goldschmidt iterative algorithm for a floating point divide calculates it by performing a fixed number of multiplications. In this paper, a variable latency Goldschmidt's divide algorithm is proposed, that performs multiplications a variable number of times until the error becomes smaller than a given value. To calculate a floating point divide '$\frac{N}{F}$', multifly '$T=\frac{1}{F}+e_t$' to the denominator and the nominator, then it becomes ’$\frac{TN}{TF}=\frac{N_0}{F_0}$'. And the algorithm repeats the following operations: ’$R_i=(2-e_r-F_i),\;N_{i+1}=N_i{\ast}R_i,\;F_{i+1}=F_i{\ast}R_i$, i$\in${0,1,...n-1}'. The bits to the right of p fractional bits in intermediate multiplication results are truncated, and this truncation error is less than ‘$e_r=2^{-p}$'. The value of p is 29 for the single precision floating point, and 59 for the double precision floating point. Let ’$F_i=1+e_i$', there is $F_{i+1}=1-e_{i+1},\;e_{i+1}',\;where\;e_{i+1}, If '$[F_i-1]<2^{\frac{-p+3}{2}}$ is true, ’$e_{i+1}<16e_r$' is less than the smallest number which is representable by floating point number. So, ‘$N_{i+1}$ is approximate to ‘$\frac{N}{F}$'. Since the number of multiplications performed by the proposed algorithm is dependent on the input values, the average number of multiplications per an operation is derived from many reciprocal tables ($T=\frac{1}{F}+e_t$) with varying sizes. 1'he superiority of this algorithm is proved by comparing this average number with the fixed number of multiplications of the conventional algorithm. Since the proposed algorithm only performs the multiplications until the error gets smaller than a given value, it can be used to improve the performance of a divider. Also, it can be used to construct optimized approximate reciprocal tables. The results of this paper can be applied to many areas that utilize floating point numbers, such as digital signal processing, computer graphics, multimedia, scientific computing, etc

A Variable Latency Newton-Raphson's Floating Point Number Reciprocal Square Root Computation (가변 시간 뉴톤-랍손 부동소수점 역수 제곱근 계산기)

  • Kim Sung-Gi;Cho Gyeong-Yeon
    • The KIPS Transactions:PartA
    • /
    • v.12A no.5 s.95
    • /
    • pp.413-420
    • /
    • 2005
  • The Newton-Raphson iterative algorithm for finding a floating point reciprocal square mot calculates it by performing a fixed number of multiplications. In this paper, a variable latency Newton-Raphson's reciprocal square root algorithm is proposed that performs multiplications a variable number of times until the error becomes smaller than a given value. To find the rediprocal square root of a floating point number F, the algorithm repeats the following operations: '$X_{i+1}=\frac{{X_i}(3-e_r-{FX_i}^2)}{2}$, $i\in{0,1,2,{\ldots}n-1}$' with the initial value is '$X_0=\frac{1}{\sqrt{F}}{\pm}e_0$'. The bits to the right of p fractional bits in intermediate multiplication results are truncated and this truncation error is less than '$e_r=2^{-p}$'. The value of p is 28 for the single precision floating point, and 58 for the double precision floating point. Let '$X_i=\frac{1}{\sqrt{F}}{\pm}e_i$, there is '$X_{i+1}=\frac{1}{\sqrt{F}}-e_{i+1}$, where '$e_{i+1}{<}\frac{3{\sqrt{F}}{{e_i}^2}}{2}{\mp}\frac{{Fe_i}^3}{2}+2e_r$'. If '$|\frac{\sqrt{3-e_r-{FX_i}^2}}{2}-1|<2^{\frac{\sqrt{-p}{2}}}$' is true, '$e_{i+1}<8e_r$' is less than the smallest number which is representable by floating point number. So, $X_{i+1}$ is approximate to '$\frac{1}{\sqrt{F}}$. Since the number of multiplications performed by the proposed algorithm is dependent on the input values, the average number of multiplications Per an operation is derived from many reciprocal square root tables ($X_0=\frac{1}{\sqrt{F}}{\pm}e_0$) with varying sizes. The superiority of this algorithm is proved by comparing this average number with the fixed number of multiplications of the conventional algorithm. Since the proposed algorithm only performs the multiplications until the error gets smaller than a given value, it can be used to improve the performance of a reciprocal square root unit. Also, it can be used to construct optimized approximate reciprocal square root tables. The results of this paper can be applied to many areas that utilize floating point numbers, such as digital signal processing, computer graphics, multimedia, scientific computing, etc.

A Variable Latency Newton-Raphson's Floating Point Number Reciprocal Computation (가변 시간 뉴톤-랍손 부동소수점 역수 계산기)

  • Kim Sung-Gi;Cho Gyeong-Yeon
    • The KIPS Transactions:PartA
    • /
    • v.12A no.2 s.92
    • /
    • pp.95-102
    • /
    • 2005
  • The Newton-Raphson iterative algorithm for finding a floating point reciprocal which is widely used for a floating point division, calculates the reciprocal by performing a fixed number of multiplications. In this paper, a variable latency Newton-Raphson's reciprocal algorithm is proposed that performs multiplications a variable number of times until the error becomes smaller than a given value. To find the reciprocal of a floating point number F, the algorithm repeats the following operations: '$'X_{i+1}=X=X_i*(2-e_r-F*X_i),\;i\in\{0,\;1,\;2,...n-1\}'$ with the initial value $'X_0=\frac{1}{F}{\pm}e_0'$. The bits to the right of p fractional bits in intermediate multiplication results are truncated, and this truncation error is less than $'e_r=2^{-p}'$. The value of p is 27 for the single precision floating point, and 57 for the double precision floating point. Let $'X_i=\frac{1}{F}+e_i{'}$, these is $'X_{i+1}=\frac{1}{F}-e_{i+1},\;where\;{'}e_{i+1}, is less than the smallest number which is representable by floating point number. So, $X_{i+1}$ is approximate to $'\frac{1}{F}{'}$. Since the number of multiplications performed by the proposed algorithm is dependent on the input values, the average number of multiplications per an operation is derived from many reciprocal tables $(X_0=\frac{1}{F}{\pm}e_0)$ with varying sizes. The superiority of this algorithm is proved by comparing this average number with the fixed number of multiplications of the conventional algorithm. Since the proposed algorithm only performs the multiplications until the error gets smaller than a given value, it can be used to improve the performance of a reciprocal unit. Also, it can be used to construct optimized approximate reciprocal tables. The results of this paper can be applied to many areas that utilize floating point numbers, such as digital signal processing, computer graphics, multimedia scientific computing, etc.

GIS-based Water Pollution Analysis (GIS기반의 오폐수 분석에 관한 연구)

  • Lee, Chol-Young;Kim, Kye-Hyun;Park, Tae-Og
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.111-116
    • /
    • 2007
  • 현재 한강수계를 제외한 3대강 수계에서 수질오염총량관리제도가 의무제로써 시행되고 있다. 그러나 과학적 타당성과 외국의 성공사례들로 하여금 한강수계에 대해서도 수질오염총량제도를 의무제화 하려는 시도가 추진되고 있고 있는 실정이다. 이 제도가 한강수계에도 도입된다면, 한강권역에 포함되는 모든 지자체는 해당 유역에서 하천으로 유입되는 배출부하량을 할당받은 할당부하량 이하로 관리하여야만 정해진 유역의 목표수질을 달성할 수 있으며, 배출부하량 관리를 계획한데로 이행하지 못한 지자체는 범칙금 내지는 행정제재를 받게 된다. 따라서 체계적이고 과학적인 모니터링 및 분석 수단이 필요하다. 이 연구는 환경부 고시 한강기술지침에 의거하여 GIS를 이용하여 인천일대의 오폐수 발생부하량 및 배출부하량을 제시하고 과학적인 오염물질 삭감방안을 모색하는 것을 목적으로 진행되었다. 생활계, 산업계, 축산계, 양식계의 4 가지로 분류된 점오염원과 토지 이용 분류에 따른 비점오염원에 대한 각각의 발생부하량을 GIS를 통해 산정하고, 모든 오염원별로 처리경로를 고려하고 처리시설별, 방법별 삭감 효율을 반영하여 배출부하량을 산정하여 GIS상에서 제시하고 분석하였다. 인천일대는 인근지역에 비해 인구밀도가 높고 산업단지가 발달하여 생활계와 산업계 오염원에 의한 발생부하량 및 배출부하량이 많았으며, 특정 오염물에 대해서는 삭감 계획이 필요함을 확인할 수 있었다. 따라서 수질오염총량관리제도에 대비하고 실제 수질 개선을 위하여 본 연구의 결과를 바탕으로 수질관리를 위한 시스템의 보완 및 삭감계획의 수립에 관한 연구가 필요하다.알 수 있었다. 이상의 결과를 토대로 기존 압출추출방법과 초임계 추출 방법을 비교한 결과 $\gamma$-토코페롤의 농도가 1.3${\~}$1.6배 증가함을 확인할 수 있었다.게 상관성이 있어 앞으로 심도 있는 연구가 더욱 필요하다.qrt{F}}}{\pm}e_0$)에서 단정도실수 및 배정도실수의 역수 제곱근 계산에 필요한 평균 곱셈 횟수를 계산한다 이들 평균 곱셈 횟수를 종래 알고리즘과 비교하여 본 논문에서 제안한 알고리즘의 우수성을 증명한다. 본 논문에서 제안한 알고리즘은 오차가 일정한 값보다 작아질 때까지만 반복하므로 역수 제곱근 계산기의 성능을 높일 수 있다. 또한 최적의 근사 역수 제곱근 테이블을 구성할 수 있다. 본 논문의 연구 결과는 디지털 신호처리, 컴퓨터 그라픽스, 멀티미디어, 과학 기술 연산 등 부동소수점 계산기가 사용되는 분야에서 폭 넓게 사용될 수 있다.>16$\%$>0$\%$ 순으로 좋게 평가되었다. 결론적으로 감농축액의 첨가는 당과 탄닌성분을 함유함으로써 인절미의 노화를 지연시키고 저장성을 높이는데 효과가 있는 것으로 생각된다. 또한 인절미를 제조할 때 찹쌀가루에 8$\%$의 감농축액을 첨가하는 것이 감인절미의 색, 향, 단맛, 씹힘성이 적당하고 쓴맛과 떫은맛은 약하게 느끼면서 촉촉한 정도와 부드러운 정도는 강하게 느낄수 있어서 전반적인 기호도에서 가장 적절한 방법으로 사료된다.비위생 점수가 유의적으로 높은 점수를 나타내었다. 조리종사자의 위생지식 점수와 위생관리

  • PDF