• 제목/요약/키워드: 배정도실수

검색결과 10건 처리시간 0.025초

32 비트 곱셈기를 사용한 뉴톤-랍손 배정도실수 역수 계산기 (Newton-Raphson's Double Precision Reciprocal Using 32 bit multiplier)

  • 조경연
    • 한국산업정보학회논문지
    • /
    • 제18권6호
    • /
    • pp.31-37
    • /
    • 2013
  • 최근 그래픽 프로세서, 멀티미디어 프로세서, 음성처리 프로세서 등에서 부동소수점이 주로 사용된다. C, Java 등 고급언어에서는 단정도실수와 배정도실수를 사용하고 있다. 본 논문에서는 32 비트 곱셈기를 사용하여 배정도실수의 역수를 계산하는 알고리즘을 제안한다. 배정도 실수 가수를 상위 부분과 하위 부분으로 나누고, 상위 부분의 역수를 뉴턴-랍손 알고리즘으로 계산한다. 그리고 이를 초기값으로 하여 배정도실수의 역수를 계산한다. 제안한 알고리즘은 입력값에 따라서 곱셈 횟수가 다르므로, 평균 곱셈 횟수를 계산하는 방식을 유도하고, 여러 크기의 근사 역수 테이블에서 평균 곱셈 횟수를 계산한다.

32 비트 곱셈기를 사용한 골드스미트 배정도실수 역수 계산기 (Goldschmidt's Double Precision Floating Point Reciprocal Computation using 32 bit multiplier)

  • 조경연
    • 한국산학기술학회논문지
    • /
    • 제15권5호
    • /
    • pp.3093-3099
    • /
    • 2014
  • 최근 그래픽 프로세서, 멀티미디어 프로세서, 음성처리 프로세서 등에서 부동소수점이 주로 사용된다. 한편 C, Java 등 고급언어에서는 단정도실수와 배정도실수를 사용하고 있다. 본 논문에서는 32비트 곱셈기를 사용하여 배정도실수의 역수를 계산하는 알고리즘을 제안한다. 배정도실수 가수를 상위 부분과 하위 부분으로 나누고, 상위 부분의 역수를 골드스미스 알고리즘으로 계산하고, 이를 초기값으로 하여 배정도실수의 역수를 계산하는 알고리즘을 제안한다. 제안한 알고리즘은 입력값에 따라서 곱셈 횟수가 다르므로, 평균 곱셈 횟수를 계산하는 방식을 유도하고, 여러 크기의 근사 역수 테이블에서 평균곱셈 횟수를 계산한다.

개선한 Goldschmidt 부동소수점 역수 알고리즘 (The improved Goldschmidt floating point reciprocal algorithm)

  • 한경헌;최명용;김성기;조경연
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2004년도 춘계종합학술대회
    • /
    • pp.247-250
    • /
    • 2004
  • Goldschmidt 알고리즘에 의한 부동소수점 1.f2의 역수는 q=NK1K2....Kn (Ki=1+Aj, j=2i)이다. 본 논문에서는 N과 A 값을 1.f2의 값에 따라서 선정하고 Aj의 값이 유효자리수의 반이하 값을 가지면 연산을 종료하는 개선된 Goldschmidt 부동소수점 역수 알고리즘을 제안한다. 1.f2가 1.01012보다 작으면 N=2-1.f2, A=1.f2-1로 하며, 1.01012보다 크거나 같으면 N=2-0.lf2, A=1-0.lf2로 한다. 한편 Goldschmidt 알고리즘은 곱셈을 반복해서 수행하므로 계산 오류가 누적이 된다. 이러한 누적 오류를 감안하면 배정도실수 역수에서는 2-57, 단정도실수 역수에서는 2-28의 유효자리수까지 연산해야 한다. 따라서 Aj가 배정도실수 역수에서는 2-29, 단정도실수 역수에서는 2-14 보다 작아지면 연산을 종료한다. 본 논문에서 제안한 개선한 Goldschmidt 역수 알고리즘은 N=2-0.1f2, A=1-0.lf2로 계산하는 종래 알고리즘과 비교하여 곱셈 연산 회수가 배정도실수 역수는 22%, 단정도실수 역수는 29% 감소하였다. 본 논문의 연구 결과는 테이블을 사용하는 Goldschmidt 역수 알고리즘에 적용해서 연산 시간을 줄일 수 있다.

  • PDF

오차 교정 K차 골드스미트 부동소수점 나눗셈 (Error Corrected K'th order Goldschmidt's Floating Point Number Division)

  • 조경연
    • 한국정보통신학회논문지
    • /
    • 제19권10호
    • /
    • pp.2341-2349
    • /
    • 2015
  • 부동소수점 나눗셈에서 많이 사용하는 골드스미트 부동소수점 나눗셈 알고리즘은 한 회 반복에 두 번의 곱셈을 수행한다. 본 논문에서는 한 회 반복에 K 번 곱셈을 수행하는 가칭 오차 교정 K차 골드스미트 부동소수점 나눗셈 알고리즘을 제안한다. 본 논문에서 제안한 알고리즘은 입력 값에 따라서 곱셈 횟수가 다르므로, 평균 곱셈 횟수를 계산하는 방식을 유도하고, 여러 크기의 근사 역수 테이블에서 단정도실수 및 배정도실수의 나눗셈 계산에 필요한 평균 곱셈 횟수를 계산한다. 또한 한 번의 곱셈과 판정으로 나눗셈 결과를 보정하는 알고리즘을 제안한다. 본 논문에서 제안한 알고리즘은 오차가 일정한 값보다 작아질 때까지만 반복 연산을 수행하므로 나눗셈 계산기의 성능을 높일 수 있다. 또한 최적의 근사 테이블을 구성할 수 있다.

개선된 뉴톤-랍손 역수 및 역제곱근 알고리즘 (An Improved Newton-Raphson's Reciprocal and Inverse Square Root Algorithm)

  • 조경연
    • 한국정보통신학회논문지
    • /
    • 제11권1호
    • /
    • pp.46-55
    • /
    • 2007
  • 다음은 부동소수점 역수 및 역제곱근 계산에 많이 사용하는 뉴톤-랍손 알고리즘은 일정한 횟수의 곱셈을 반복하여 계산한다. 본 논문에서는 뉴톤-랍손 알고리즘의 반복 과정의 오차를 예측하여 오차가 정해진 값보다 작아지는 시점까지 반복 연산하는 개선된 뉴톤-랍손 알고리즘을 제안한다. 본 논문에서 제안한 알고리즘은 입력 값에 따라서 곱셈 횟수가 다르므로, 평균 곱셈 횟수를 계산하는 방식을 유도하고, 여러 크기의 근사 테이블에서 단정도실수 및 배정도실수의 역수 및 역제곱근 계산에 필요한 평균 곱셈 횟수를 산출한다. 이들 평균 곱셈 횟수를 종래 알고리즘과 비교하여 본 논문에서 제안한 알고리즘의 우수성을 증명한다. 본 논문에서 제안한 알고리즘은 오차가 일정한 값보다 작아질 때까지만 반복 연산을 수행하므로 역수 및 역제곱근 계산기의 성능을 높일 수 있고 최적의 근사 테이블을 구성할 수 있다. 본 논문의 연구 결과는 디지털 신호처리, 컴퓨터 그라픽스, 멀티미디어, 과학 기술 연산 등 부동소수점 계산기가 사용되는 분야에서 폭 넓게 사용될 수 있다.

가변 시간 골드스미트 부동소수점 제곱근 계산기 (A Variable Latency Goldschmidt's Floating Point Number Square Root Computation)

  • 김성기;송홍복;조경연
    • 한국정보통신학회논문지
    • /
    • 제9권1호
    • /
    • pp.188-198
    • /
    • 2005
  • 부동소수점 제곱근 계산에 많이 사용하는 골드스미트 제곱근 알고리즘은 곱셈을 반복하여 제곱근을 계산한다. 본 논문에서는 골드스미트 제곱근 알고리즘의 반복 과정의 오차를 예측하여 오차가 정해진 값보다 작아지는 시점까지 반복 연산하는 알고리즘을 제안한다. 'F'의 제곱근 계산은 초기값 $X_0=Y_0=T^2{\times}F,\;T=\frac{1}{\sqrt {F}}+e_t$에 대하여, $R_i=\frac{3-e_r-X_i}{2},\;X_{i+1}=X_i{\times}R^2_i,\;Y_{i+1}=Y_i{\times}R_i,\;i{\in}\{{0,1,2,{\ldots},n-1} }}'$을 반복한다 곱셈 결과는 소수점 이하 p 비트 미만을 절삭하며, 절삭 오차는 $e_r=2^{-p}$보다 작다. p는 단정도실수에서 28, 배정도실수에서 58이다. $X_i=1{\pm}e_i$ 이면 $X_{i+1}$ = $1-e_{i+1}$ $e_{i+1} {\frac{3e^2_i}{4}{\mp}\frac{e^3_i}} $ +4$e_{r}$이다. $|X_i-1|$ < $2^{\frac{-p+2}{2}}$이면, $e_{i+1}$ < $8e_{r}$ 이 부동소수점으로 표현할 수 있는 최소값보다 작게 되며, $\sqrt{F}$ {\fallingdotseq}\frac{Y_{i+1}}{T}}$이다. 본 논문에서 제안한 알고리즘은 입력 값에 따라서 곱셈 횟수가 다르므로, 평균 곱셈 횟수를 계산하는 방식을 도출하고, 여러 크기의 근사 역수 제곱근 테이블 ($T=\frac{1}{\sqrt{F}}+e_i$)에서 단정도실수 및 배정도실수의 제곱근 계산에 필요한 평균 곱셈 횟수를 계산한다. 이들 평균 곱셈 횟수를 종래 알고리즘과 비교하여 본 논문에서 제안한 알고리즘의 우수성을 증명한다. 본 논문에서 제안한 알고리즘은 오차가 일정한 값보다 작아질 때까지만 반복하므로 제곱근 계산기의 성능을 높일 수 있다. 또한 최적의 근사 역수 제곱근 테이블을 구성할 수 있다. 본 논문의 연구 결과는 디지털 신호처리, 컴퓨터 그래픽스, 멀티미디어, 과학 기술 연산 등 부동소수점 계산기가 사용되는 분야에서 폭 넓게 사용될 수 있다.

가변 시간 골드스미트 부동소수점 나눗셈기 (A Variable Latency Goldschmidt's Floating Point Number Divider)

  • 김성기;송홍복;조경연
    • 한국정보통신학회논문지
    • /
    • 제9권2호
    • /
    • pp.380-389
    • /
    • 2005
  • 부동소수점 나눗셈에서 많이 사용하는 골드스미트 나눗셈 알고리즘은 일정한 횟수의 곱셈을 반복한다. 본 논문에서는 오차가 정해진 값보다 작아질 때까지 곱셈을 반복하여 나눗셈을 수행하는 가변 시간 골드스미트 부동소수점 나눗셈 알고리즘을 제안한다. 부동소수점 나눗셈 ‘$\frac{N}{F}$'는 'T=$\frac{1}{F}+e_t$'를 분모와 분자에 곱하면 ’$\frac{TN}{TF}=\frac{N_0}{F_0}$'가 된다. ’$R_i=(2-e_r-F_i),\;N_{i+1}=N_i{\ast}R_i,\;F_{i+1}=F_i{\ast}R_i$, i$\in${0,1,...n-1}'를 반복한다. 중간 곱셈 결과는 소수점이하 p 비트 미만을 절삭하며, 절삭 오차는 ‘$e_r=2^{-p}$', 보다 작다. p는 단정도실수에서 29, 배정도실수에서 59이다. ’$F_i=1+e_i$'이라고 하면 ‘$F_{i+1}=1-e_{i+1},\;e_{i+1},\;e_{i+1}'이 된다. '$[F_i-1]<2^{\frac{-p+3}{2}}$'이면, ’$e_{i+1}<16e_r$'이 부동소수점으로 표현 가능한 최소값보다 작아지며, ‘$N_{i+1}\risingdotseq\frac{N}{F}$이다. 본 논문에서 제안한 알고리즘은 입력 값에 따라서 곱셈 횟수가 다르므로, 평균 곱셈 횟수를 계산하는 방식을 도출하고, 여러 크기의 근사 역수 테이블($T=\frac{1}{F}+e_t$)에서 단정도실수 및 배정도실수의 나눗셈 계산에 필요한 평균 곱셈 횟수를 계산한다. 이들 평균 곱셈 횟수를 종래 알고리즘과 비교하여 본 논문에서 제안한 알고리즘의 우수성을 증명한다. 본 논문에서 제안한 알고리즘은 오차가 일정한 값보다 작아질 때까지만 반복 연산을 수행하므로 나눗셈기의 성능을 높일 수 있다. 또한 최적의 근사 역수 테이블을 구성할 수 있다. 본 논문의 연구 결과는 디지털 신호처리, 컴퓨터 그라픽스,, 멀티미디어, 과학 기술 연산 등 부동소수점 계산기가 사용되는 분야에서 폭 넓게 사용될 수 있다.

가변 시간 뉴톤-랍손 부동소수점 역수 제곱근 계산기 (A Variable Latency Newton-Raphson's Floating Point Number Reciprocal Square Root Computation)

  • 김성기;조경연
    • 정보처리학회논문지A
    • /
    • 제12A권5호
    • /
    • pp.413-420
    • /
    • 2005
  • 부동소수점 제곱근 계산에 많이 사용하는 뉴톤-랍손 부동소수점 역수 제곱근 알고리즘은 일정한 횟수의 곱셈을 반복하여 역수 제곱근을 계산한다. 본 논문에서는 뉴톤-랍손 역수 제곱근 알고리즘의 반복 과정의 오차를 예측하여 오차가 정해진 값보다 작아지는 시점까지 반복 연산하는 알고리즘을 제안한다. `F`의 역수 제곱근 계산은 초기값 '$X_0={\frac{1}{\sqrt{F}}}{\pm}e_0$'에 대하여, '$X_{i+1}=\frac{{X_i}(3-e_r-{FX_i}^2)}{2}$, $i\in{0,1,2,{\ldots}n-1}$'을 반복한다. 중간 곱셈 결과는 소수점 이하 p 비트 미만을 절삭하며, 절삭 오차는 '$e_r=2^{-p}$' 보다 작다. p는 단정도실수에서 28, 배정도실수에서 58이다. '$X_i={\frac{1}{\sqrt{F}}}{\pm}e_i$'라고 하면 '$X_{i+1}={\frac{1}{\sqrt{F}}}-e_{i+1}$, $e_{i+1}{<}{\frac{3{\sqrt{F}}{{e_i}^2}}{2}}{\mp}{\frac{{Fe_i}^3}{2}}+2e_r$이 된다. '$|{\frac{\sqrt{3-e_r-{FX_i}^2}}{2}}-1|<2^{\frac{\sqrt{-p}{2}}}$'이면,'$e_{i+1}<8e_r$이 부동소수점으로 표현 가능한 최소값보다 작아지며, '$X_{i+1}\fallingdotseq{\frac{1}{\sqrt{F}}}$'이다. 본 논문에서 제안한 알고리즘은 입력 값에 따라서 곱셈 횟수가 다르므로, 평균 곱셈 횟수를 계산하는 방식을 도출하고, 여러 크기의 근사 역수 제곱근 테이블($X_0={\frac{1}{\sqrt{F}}}{\pm}e_0$)에서 단정도실수 및 배정도실수의 역수 제곱근 계산에 필요한 평균 곱셈 횟수를 계산한다 이들 평균 곱셈 횟수를 종래 알고리즘과 비교하여 본 논문에서 제안한 알고리즘의 우수성을 증명한다. 본 논문에서 제안한 알고리즘은 오차가 일정한 값보다 작아질 때까지만 반복하므로 역수 제곱근 계산기의 성능을 높일 수 있다. 또한 최적의 근사 역수 제곱근 테이블을 구성할 수 있다. 본 논문의 연구 결과는 디지털 신호처리, 컴퓨터 그라픽스, 멀티미디어, 과학 기술 연산 등 부동소수점 계산기가 사용되는 분야에서 폭 넓게 사용될 수 있다.

가변 시간 뉴톤-랍손 부동소수점 역수 계산기 (A Variable Latency Newton-Raphson's Floating Point Number Reciprocal Computation)

  • 김성기;조경연
    • 정보처리학회논문지A
    • /
    • 제12A권2호
    • /
    • pp.95-102
    • /
    • 2005
  • 부동소수점 나눗셈에서 많이 사용하는 뉴톤-랍손 부동소수점 역수 알고리즘은 일정한 횟수의 곱셈을 반복하여 역수를 계산한다. 본 논문에서는 오차가 정해진 값보다 작아질 때까지 곱셈을 반복해서 역수를 계산하는 가변 시간 뉴톤-랍손 부동소수점 역수 알고리즘을 제안한다. 'F'의 역수 계산은 초기값 $'X_0=\frac{1}{F}{\pm}e_0'$에 대하여, $'X_{i+1}=X=X_i*(2-e_r-F*X_i),\;i\in\{0,\;1,\;2,...n-1\}'$을 반복한다. 중간 곱셈 견과는 소수점 이하 p비트 미만을 절삭하며, 절삭 오차는 $'e_r=2^{-p}'$보다 작다. p는 단정도실수에서 27, 배정도실수에서 57이다. $'X_i=\frac{1}{F}+e_i{'}$라 하면 $'X_{i+1}=\frac{1}{F}-e_{i+1},\;e_{i+1}이 된다. $'\mid(2-e_r-F*X_i)-1\mid<2^{\frac{-p+2}{2}}{'}이면, $'e_{i+1}<4e_r{'}$이 부동산소수점으로 표현 가능한 최소값보다 작이지며, $'X_{i+1}\fallingdotseq\frac{1}{F}'$이다. 본 논문에서 제안한 알고리즘은 입력 값에 따라서 곱셈 횟수가 다르므로, 평균 곱셈 횟수를 계산하는 방식을 유도하고, 여러 크기의 근사 역수 테이블$(X_0=\frac{1}{F}{\pm}e_0)$에서 단정도실수 및 배정도실수의 역수 계산에 필요한 평균 곱셈 횟수를 계산한다. 이들 평균 곱셈 횟수를 종래 알고리즘과 비교하여 본 논문에서 제안한 알고리즘의 우수성을 증명한다. 본 논문에서 제안한 알고리즘은 오차가 일정한 값보다 작아질 때까지만 반복 연산을 수행하므로 역수 계산기의 성능을 높일 수 있다. 또한 최적의 근사 역수 테이블을 구성할 수 있다. 본 논문의 연구 결과는 디지털 신호처리, 컴퓨터 그라픽스, 멀티미디어, 과학 기술 연산 등 부동소수점 계산기가 사용되는 분야에서 폭 넓게 사용될 수 있다.

GIS기반의 오폐수 분석에 관한 연구 (GIS-based Water Pollution Analysis)

  • 이철용;김계현;박태옥
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2007년도 GIS 공동춘계학술대회 논문집
    • /
    • pp.111-116
    • /
    • 2007
  • 현재 한강수계를 제외한 3대강 수계에서 수질오염총량관리제도가 의무제로써 시행되고 있다. 그러나 과학적 타당성과 외국의 성공사례들로 하여금 한강수계에 대해서도 수질오염총량제도를 의무제화 하려는 시도가 추진되고 있고 있는 실정이다. 이 제도가 한강수계에도 도입된다면, 한강권역에 포함되는 모든 지자체는 해당 유역에서 하천으로 유입되는 배출부하량을 할당받은 할당부하량 이하로 관리하여야만 정해진 유역의 목표수질을 달성할 수 있으며, 배출부하량 관리를 계획한데로 이행하지 못한 지자체는 범칙금 내지는 행정제재를 받게 된다. 따라서 체계적이고 과학적인 모니터링 및 분석 수단이 필요하다. 이 연구는 환경부 고시 한강기술지침에 의거하여 GIS를 이용하여 인천일대의 오폐수 발생부하량 및 배출부하량을 제시하고 과학적인 오염물질 삭감방안을 모색하는 것을 목적으로 진행되었다. 생활계, 산업계, 축산계, 양식계의 4 가지로 분류된 점오염원과 토지 이용 분류에 따른 비점오염원에 대한 각각의 발생부하량을 GIS를 통해 산정하고, 모든 오염원별로 처리경로를 고려하고 처리시설별, 방법별 삭감 효율을 반영하여 배출부하량을 산정하여 GIS상에서 제시하고 분석하였다. 인천일대는 인근지역에 비해 인구밀도가 높고 산업단지가 발달하여 생활계와 산업계 오염원에 의한 발생부하량 및 배출부하량이 많았으며, 특정 오염물에 대해서는 삭감 계획이 필요함을 확인할 수 있었다. 따라서 수질오염총량관리제도에 대비하고 실제 수질 개선을 위하여 본 연구의 결과를 바탕으로 수질관리를 위한 시스템의 보완 및 삭감계획의 수립에 관한 연구가 필요하다.알 수 있었다. 이상의 결과를 토대로 기존 압출추출방법과 초임계 추출 방법을 비교한 결과 $\gamma$-토코페롤의 농도가 1.3${\~}$1.6배 증가함을 확인할 수 있었다.게 상관성이 있어 앞으로 심도 있는 연구가 더욱 필요하다.qrt{F}}}{\pm}e_0$)에서 단정도실수 및 배정도실수의 역수 제곱근 계산에 필요한 평균 곱셈 횟수를 계산한다 이들 평균 곱셈 횟수를 종래 알고리즘과 비교하여 본 논문에서 제안한 알고리즘의 우수성을 증명한다. 본 논문에서 제안한 알고리즘은 오차가 일정한 값보다 작아질 때까지만 반복하므로 역수 제곱근 계산기의 성능을 높일 수 있다. 또한 최적의 근사 역수 제곱근 테이블을 구성할 수 있다. 본 논문의 연구 결과는 디지털 신호처리, 컴퓨터 그라픽스, 멀티미디어, 과학 기술 연산 등 부동소수점 계산기가 사용되는 분야에서 폭 넓게 사용될 수 있다.>16$\%$>0$\%$ 순으로 좋게 평가되었다. 결론적으로 감농축액의 첨가는 당과 탄닌성분을 함유함으로써 인절미의 노화를 지연시키고 저장성을 높이는데 효과가 있는 것으로 생각된다. 또한 인절미를 제조할 때 찹쌀가루에 8$\%$의 감농축액을 첨가하는 것이 감인절미의 색, 향, 단맛, 씹힘성이 적당하고 쓴맛과 떫은맛은 약하게 느끼면서 촉촉한 정도와 부드러운 정도는 강하게 느낄수 있어서 전반적인 기호도에서 가장 적절한 방법으로 사료된다.비위생 점수가 유의적으로 높은 점수를 나타내었다. 조리종사자의 위생지식 점수와 위생관리

  • PDF