• Title/Summary/Keyword: 배열회수 보일러

Search Result 39, Processing Time 0.022 seconds

Fatigue Evaluation of Steam Separators of Heat Recovery Steam Generators According to the ASME Boiler and Pressure Vessel Code (ASME Boiler & Pressure Vessel Code에 따른 배열회수보일러 기수분리기의 피로 평가)

  • Lee, Boo-Youn
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.150-159
    • /
    • 2018
  • The present research deals with a finite element analysis and fatigue evaluation of a steam separator of a high-pressure evaporator for the Heat Recovery Steam Generator (HRSG). The fatigue during the expected life of the HRSG was evaluated according to the ASME Boiler and Pressure Vessel Code Section VIII Division 2 (ASME Code). First, based on the eight transient operating conditions prescribed for the HRSG, temperature distribution of the steam separator was analyzed by a transient thermal analysis. Results of the thermal analysis were used as a thermal load for the structural analysis and used to determine the mean cycle temperature. Next, a structural analysis for the transient conditions was carried out with the thermal load, steam pressure, and nozzle load. The maximum stress location was found to be the riser nozzle bore, and hence fatigue was evaluated at that location, as per ASME Code. As a result, the cumulative usage factor was calculated as 0.00072 (much less than 1). In conclusion, the steam separator was found to be safe from fatigue failure during the expected life.

Stress Analysis and Evaluation of Steam Separator of Heat Recovery Steam Generator (HRSG) (배열회수보일러 기수분리기의 응력해석 및 평가)

  • Lee, Boo-Youn
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.23-31
    • /
    • 2018
  • Stress of a steam separator, equipment of the high-pressure (HP) evaporator for a HRSG, was analyzed and evaluated according to ASME Boiler & Pressure Vessel Code Section VIII Division 2. First, from the analysis results of the piping system model of the HP evaporator, reaction forces of the riser tubes connected to the steam separator, i.e., nozzle loads, were derived. Next, a finite element model of the steam separator was constructed and analyzed for the design pressure and the nozzle loads. The results show that the maximum stress occurred at the bore of the riser nozzle. The primary membrane stresses at the shell and nozzle were found to be less than the allowable stress. Next, the steam separator was analyzed for the steady-state operating conditions of operating pressure, operating temperature, and nozzle loads. The maximum stress occurred at the bore of the riser nozzle. The primary plus secondary membrane plus bending stress at the shell and nozzle was found to be less than the allowable stress.

NUMERICAL STUDY ON FLOW CHARACTERISTIC IN THE HEAT RECOVERY STEAM GENERATOR (배열회수장치의 유동특성에 관한 수치적 연구)

  • Choi, H.K.;Yoo, G.J.;Shin, B.J.;Kim, C.H.
    • Journal of computational fluids engineering
    • /
    • v.15 no.1
    • /
    • pp.17-23
    • /
    • 2010
  • Performance improvements of the heat recovery steam generator(HRSG) can be achieved by improving the flow distribution of exhaust gases for a various type of different equipments. A number of design parameters are systematically investigated and their effects on an index of velocity deviation established. The parameters include the three shape of the transition duct and the wide range of the guide vane angles. The numerical results clearly reveal feature of the flow pattern in the transition duct, velocity deviation and pressure drop at tube bank part.

Heat Recovery from a 1 MW Class Gas Engine CHP System: 100 kW Class Model Test (온수, 증기 동시 발생형 가스엔진 열병합발전의 배열회수 특성: 100 kW급 모형 실험)

  • Ahn, Joon;Kim, Hyouck-Ju;Choi, Kyu-Sung;Song, Dae-Seok
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.345-350
    • /
    • 2008
  • The present study has been conducted to develop a heat recovery system for a 1 MW class gas engine based cogeneration system. In the cogeneration system, heat is recovered from two parts, which are jacket water and exhaust gas. The heat from the jacket water is recovered by a plate type heat exchanger and used for the room heating and/or hot water supply. The heat from the exhaust gas is used to generate steam. For both of the heat recovery devices, 1/5 scaled tests are performed and the data are compared to the conventional correlations for the design.

  • PDF

Reduction of the Flow Accelerated Corrosion within Low Pressure Evaporator Connection Pipe by Interception of Hydrazine for Water Treatment (탈산소제 차단 수처리에 의한 배열회수보일러 저압증기발생기 연결배관내의 유동가속부식 저감)

  • Son, Byung-Gwan;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.9 no.4
    • /
    • pp.26-30
    • /
    • 2013
  • Based on case that HRSG low pressure steam generator tube was damaged by FAC in 500 MW A CCPP. This case analyzed the effect of application about the block of hydrazine water treatment which is applied for increasing dissolved oxygen. And also try to deduce the major factor of FAC Which is caused by lacking of dissolved oxygen of boiler feed system. After 1 year of water treatment, the figure of dissolved oxygen in the boiler feed water has increased from 0.15 ppb to 3~5 ppb and the figure of oxidation reduction potential has increased from -245 mV to 170 mV. And Iron content, the corrosion products by FAC has decreased from 18.5 ppb to 5~7 ppb. According to the result of experiment, we could able to confirm that the interception of hydrazine of water treatment is effective to reduce FAC.

  • PDF

Performance Analysis of CHP Condersing Season heat load Conditions (계절별 부하 특성을 고려한 CHP 성능 해석)

  • Seo, Young-Ho;Lee, Joon-Hee;Kim, Nam-Jin;Kim, Jong-Yoon;Cho, Sung-Kap;Jeon, Yong-Han
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.454-459
    • /
    • 2010
  • This paper is a actual design case applied to make a bid for CHP plant construction in some country. The purpose of this study is to optimize the system performance for the requirement conditions written in ITB by the client. The system consists of gas turbine, steam turbine, heat recovery steam generator and heat exchangers for district heating. The performance analysis is conducted for various seasons conditions and heat load. As a result, air density and heat load is reduced in accordance with decreasing of the outdoor temperature, therefore the system power is reduced. Considering this, the design parameters to meet the requriement conditions are optimized.

환경친화의 코제너레이션 시스템

  • 대한전기협회
    • JOURNAL OF ELECTRICAL WORLD
    • /
    • s.272
    • /
    • pp.81-85
    • /
    • 1999
  • 코제너레이션이란 Co(공동의)와 Generation(발생한다)의 복합어로 이것을 시스템업한 것을 코제너레이션 시스템이라한다. 코제너레이션 시스템은 전기와 열을 동시에 생산하는데서 열(熱)병합 발전시스템이라고도 하며, 종래 대기 가운데 방출되고 있던 엔진배열(排熱)을 회수하여 발전함과 동시에 이것을 활용하여 종합에너지효율을 75$\%$전후로까지 높이는 시스템이다. 배열 이용으로 보일러 운전시간을 단축시켜 연료소비량을 줄일 수 있게 되어 이산화탄소($CO_2$)를 삭감할 수 있는 외에, 연료를 연소시킴으로써 발생하는 질소산화물($NO_x$)에 대해서도 그 저감기술이 여러 가지 개발되고 있어 국가에서 정한 기준치 이하로 억제할 수 있게 되었다. $CO_2$에 대해서는 지구 온난화방지 교토회의에서 1990년 대비 6$\%$삭감에 합의가 이루어졌으며, 이것을 해결할 수 있는 에너지효율화 환경기기로서 코제너레이션 시스템은 이제부터 보급이 가속화될 것으로 생각된다.

  • PDF

Effect of Flame Radiative Heat Transfer in Horizontal-Type HRSG with Duct Burner (덕트 버너 추가에 따른 수직형 HRSG 내 화염 복사 열전달의 영향에 관한 연구)

  • Kim, Daehee;Kim, Seungjin;Choi, Sangmin;Lee, Bong Jae;Kim, Jinil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.2
    • /
    • pp.197-204
    • /
    • 2013
  • A method was developed for analyzing the radiation heat transfer from the duct burner flame to the heat exchanger in a heat recovery steam generator (HRSG) in order to supplement the existing thermal design process. The burner flame and the heat exchanger were considered to be imaginary planes, and the flame temperature, surface, and emissivity were simplified using an engineering approach. Three analysis cases in which the duct burner position and fuel were changed were considered. The calculated flame radiative heat transfer and local flux on the heating surface were compared with those of 3-atomic gas radiation and convection. In all analysis cases, heat transfer by 3-atomic gas radiation was very small. The ratio of the flame radiative heat transfer to the convection heat transfer on the heating surface was estimated to be as high as 8-41%. Moreover, the local heat flux on the heating surface centerline was dominated by flame radiative heat flux.

기획특집 - 전기에너지산업 현장(現場)을 가다 - 두산중공업(주)

  • 대한전기협회
    • JOURNAL OF ELECTRICAL WORLD
    • /
    • s.410
    • /
    • pp.48-53
    • /
    • 2011
  • 발전 및 플랜트 분야의 '청정 산소탱크' 두산중공업. 명장(明匠)은 명품(名品)을 낳고, 이렇게 만들어진 두중의 명품은 지구와 인류의 가치를 드높이고 있다. 발전과 Water사업 분야의 다양한 명품들을 제작해 내고 있는 두중 창원공장. 최첨단 친환경 고효율 발전기술을 보유한 두중은 국내에서 가동 중인 20기의 원전 중 16기에 주기기 공급, HRGS(배열회수보일러) 세계시장 점유율 1위, 자타공인 해수담수화 분야 세계 넘버 원 기업이다. 또한 지난 20년간 세계에서 가장 많은 원전 주기기 공급뿐만 아니라 중국 최초의 3G 원전인 산먼, 하이양 원전 수주, 미국에서 발주된 6기의 AP1000 주기기 전량을 수주하는 기록을 달성하기도 했다. 여기에 더해 최근 두산중공업은 풍력발전 등 신재생에너지 분야와 CCS 등 친환경발전 분야의 기술 상용화부문에서도 가속도를 내고 있다. 일관성과 원칙을 중시하는 박지원 사장의 진두지휘 하에 '경쟁우위의 지속'을 지향하는 두중의 글로벌 가치제고 노력은 여전히 현재 진행형이고, 미래지향적이다.

  • PDF

Modelling and Verification of Once-Through Subcritical Heat Recovery Steam Generator (관류형 아임계압 배열회수보일러의 열성능 모델링과 검증)

  • Lee, Chae-Soo;Choi, Young-Jun;Kim, Hyun-Gee;Yang, Ok-Chul;Chong, Chae-Hon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1692-1697
    • /
    • 2004
  • The once-through heat recovery steam generator is ideally matched to very high temperature and pressure, well into the supercritical range. Moreover this type of boiler is structurally simpler than drum type boiler. In drum type boiler, each tube play a well-defined role: water preheating, vaporization, superheating. Empirical equations are available to predict the average heat transfer coefficient for each regime. For once-through heat recovery steam generator, this is no more the case and mathematical models have to be adapted to account for the disappearance of drum type economizer, boiler, superheater. General equations have to be used for each tube of boiler, and actual heat transfer condition in each tube has to be identified.

  • PDF