• Title/Summary/Keyword: 배수관 구조물

Search Result 9, Processing Time 0.026 seconds

EMP Shielding Effectiveness of Water Pipe Structure Considering Attenuation Characteristics of Water (물의 감쇠특성을 고려한 배수관 구조의 EMP 차폐 효과 분석)

  • Kim, Woobin;Kim, Sangin;Kim, Waedeuk;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.12
    • /
    • pp.1011-1014
    • /
    • 2017
  • Additional metal shielding is installed in the water pipes used in septic tanks to protect against damage from electromagnetic pulse (EMP) events. This shielding prevents EMP damage, but impurities present in water cannot pass through the shielding structure. Thus, the original function of the water pipes is lost as the pipes are blocked, and an additional maintenance workforce is needed to manage this blockage. To solve this problem, we propose a water pipe without an additional shielding structure; the proposed pipe was designed with consideration of the attenuation characteristics of water. The immersed depth was varied from 400 mm to 800 mm, while the diameter of the pipe was fixed at 100 mm. The shielding effectiveness increased from 70 dB to 100 dB around 2 GHz. Through the verification process, we propose an effective design guideline that can maintain the function of the water pipe and provide protection from EMP damages without additional shielding structure.

An experimental study on the static behavior of advanced composite materials drainage pipe member for an undersea tunnel (해저터널용 복합신소재 배수복합관 부재의 정적거동에 관한 실험적 연구)

  • Shin, Jong-Ho;Kim, Kang-Hyun;Kim, Doo-Rae;Ji, Hyo-Seon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.65-74
    • /
    • 2015
  • In order to design an advanced composite materials drainage pipe structures for an undersea tunnel, mechanical properties for the lamina types of the structural member must be predetermined. It is also reported that the size effect of the specimen is significant. In this study the tensile tests for the lamina types of the structural member are conducted at the room temperature ($20^{\circ}C$) and the seawater temperature ($0^{\circ}C$). In addition, the mechanical properties are predicted by theory based on the rule of mixtures and elasticity solution technique. The predicted mechanical properties are compared with test results obtained by a test method. In the design of an advanced composite materials drainage pipe structural members for an undersea tunnel, the used mechanical properties must be applied at the room temperature with considering the modified factors. These are to be offered the datum for the design an advanced composite materials drainage pipe structures for an undersea tunnel.

Drainage system for leakage treatment of cement concrete structure in underground (콘크리트 지하구조물 누수 처리를 위한 유도배수시스템)

  • Kim, Dong-Gyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.4
    • /
    • pp.573-585
    • /
    • 2019
  • The objective of this study is to propose the drainage system that has been improved the workability, waterproofing and drainage performance to treat the leakage from the cement concrete structures in underground. It is improved that the pipe for conveying ground leak in the existing drainage system had the problem in workability and waterproof. The drainage systems with the improved pipe for conveying ground leak were constructed in conventional concrete lining tunnels to evaluate the workability, waterproofing and drainage. The waterproof and the drainage performance of the drainage system was evaluated by injecting 1,000 ml of red water in the back of the drainage system at 3 weeks, 6 weeks, 9 weeks, 11 weeks, 14 weeks, 17 weeks and 23 weeks. During 6 months of field performance test, the average daily temperature of the tunnel site was measured from $-12.4^{\circ}C$ to $19.7^{\circ}C$. The daily minimum temperature was $-17.2^{\circ}C$ and the daily maximum temperature was $26.7^{\circ}C$. There was no problem in waterproof and drainage performance on the pipe for conveying ground leak and the drainage system during 6 months for field performance test. It is concluded that the improved drainage system can be applied to various cement concrete underground structures where leakage occurs, and has little seasonal effect.

Analysis of 2-Unit Systems with Two Types of Failures

  • Park, Yeong-Taek;Kim, Dae-Hong
    • Journal of Korean Society for Quality Management
    • /
    • v.11 no.2
    • /
    • pp.32-36
    • /
    • 1983
  • 2-Unit systems such as series, parallel, standby with two types of failures are considered. Closed form solutions for both the steady-state and time-dependent availability of 2-Unit system with two types of failures are developed.

  • PDF

Long-term performance of drainage system for leakage treatment of tunnel operating in cold region (한랭지역에서 운영 중인 터널의 누수처리를 위한 유도배수시스템의 장기 성능 평가)

  • Kim, Dong-Gyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1177-1192
    • /
    • 2018
  • The objective of this study is to develop the existing drainage system for catching the partial leakage of tunnel structures operating in cold region. The drainage system consists of drainage board, Hotty-gel as a waterproofing material, cover for preventing protrusion of Hotty-gel, air nailer, fixed nail, pipe for collecting ground leak, pipe for conveying ground leak, wire-mesh, and sprayed cement mortar. The drainage systems were installed in conventional concrete lining tunnels to evaluate the site applicability and constructability. The performances of waterproof and the drainage in the drainage system were evaluated by injecting 1,000 ml of red water in the back of the drainage system at 7 days, 14 days, 21 days, 28 days, 2 months, 3 months, 4 months, 5 months, 6 months, 7 months and 8 months. During 8 months of field test, the average daily temperature of the tunnel site was measured from $-16.0^{\circ}C$ to $25.6^{\circ}C$. The daily minimum temperature was $-21.3^{\circ}C$ and the daily maximum temperature was $30.8^{\circ}C$. There was no problem in waterproof and drainage performance of the drainage board in the drainage system. However, the pipe for conveying ground leak had the leakage problem from 14 days. It is considered that the leakage of the pipe for conveying ground leak was caused by the deformation of the pipe of the flexible plastic material having a thickness of 0.2 cm by using the high pressure air nailer and the fixing pin and the insufficient thickness and width of the hotty-gel for preventing the leakage.

Analysis on Change of Construction Type for the Non-national Forest Road in Jeollabuk-do (전라북도 민유임도의 시기별 공종변화에 관한 연구)

  • Son, Jae-Ho;Park, Chong-Min;Lee, Joon-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.6
    • /
    • pp.652-660
    • /
    • 2007
  • The study was intended to investigate the changes of construction types of 216 non-national forest roads, which were completed between 1989 and 2005 in Jeollabuk-do, by analyzing their drawing and specification. It was found that the mean length of yearly construction has been significantly reduced after the Policy of Green Forest Roads compared with before the policy. Soil cut-off of earth work was changed from bulldozer to a combination of bulldozer and excavator. Soils were transported by truck in all design, but establishment of spoil-bank was not designed at all. The design of slope revegetation works was developed from turfing and Bastard indigo planting to seed spray, combination of seed spray and belt-sodding, and mulching with coir net and rice straw. In design of the culvert, the average interval of culvert installation was reduced to 92m in step 3, the dimension of culverts was expanded to over 600 mm after step 2, and all drainpipes were corrugated steel pipes. The design length of concrete pavement increased from 40 m/km of step 1 to 240 m/km of step 3. Thanks to the enormously increased amount of concrete pavement, the stability and functionality of forest roads could be improved. Stone masonry was the main work drawn for slope stability, and concrete retaining wall and gabion have been drawn for same object since 1999.

A Study on Development Standard Calculation Program of Forest Road Drainage Facilities (임도 배수시설 규격 산정 프로그램 개발에 관한 연구)

  • Choi, Yeon-Ho;Lee, Joon-Woo;Kim, Myeong-Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.1
    • /
    • pp.25-33
    • /
    • 2011
  • The purpose of this study is to develop a standard calculation program of forest road drainage facilities that may help forest road designers to design forest road drainage facilities more conveniently and precisely. Especially, the characteristics of this program is that the forest road designers may calculate the amount of outflow in the basin using rainfall intensity data conveniently, without the data designers should acquire through site measurements when they carry out indoor preliminary measurements before they go out for outdoor measurements. In this manner, excessive design may be restrained by offering minimum standard calculation for drainage structures. And also this study was designed to facilitate proper layout of drainage structures by calculating outflow discharge of each basin where forest roads will be installed. Especially, this study will contribute to leveling-up of forest design techniques as the researcher has prepared the reports on whole process of drain pipe installation and provided them in the form of computer file or printout, which show a rational design process, and make it possible to modify in case of an error.

Improvement of existing drainage system for leakage treatment in exiting underground structures (운영중인 지하구조물의 누수처리를 위한 유도배수공법의 개선)

  • Kim, Dong-Gyou;Yim, Min-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.4
    • /
    • pp.669-683
    • /
    • 2017
  • The objective of this study is to propose a modification of the previously proposed drainage system for catching the partial leakage of underground concrete structures. Two techniques were proposed for applying the drainage system only to the leaking parts. One was for conveying leaking groundwater to the collection point in the drainage system and the other was for conveying the collected groundwater to the primary drainage system of the underground concrete structure. Four waterproofing materials for conveying leaking groundwater to the catchment point of the drainage system, Durkflex made of porous rubber material, KE-45 silicone adhesive with super strong adhesion, Hotty-gel made of polymeric materials and general silicone adhesive were evaluated for waterproofing performance. Hotty-gel only showed perfect waterproof performance and the other three waterproof materials leaked. The modified drainage system with Hotty-gel and drainage pipe with fixed saddle to convey the leaking groundwater from the catchment point to the primary drainage system were tested on the concrete retaining wall. The waterproof performance and the drainage performance were evaluated by injecting 1,000 ml of water in the back of the modified drainage system at the 7-day, 14-day, 21-day, 28-day, 2-month and 3-month. There was no problem in waterproof performance and drainage performance of the modified drainage system during 3 months. In order to evaluate the construction period and construction cost of the modified drainage system, it was compared with the existing leaching repair method in surface cleaning stage, leakage treatment stage, and protective barrier stage. Total construction period and construction cost were compared in considering the contents of work, repair material, construction equipment, working time, and total number of workers. As a result of comparing and analyzing in each construction stage, it was concluded that the modified drainage system could save construction period and construction cost compared to the existing leaching repair method.

A study on efficient management of the drainages of underground tunnels for environmentally friendly urban railway systems (도시철도 친환경 지하터널 배수형식의 효율적인 유지관리 방안 검토)

  • Baek, Jong-Myeong;Hong, Jong-Hun;Kim, Han-Bae
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1982-1990
    • /
    • 2010
  • Excepting tunnel of dorimstream - ccachimountain station section, the subway line No.2th section was build using ASSM and NATM methods because of soil pressure and land condition. The way of dealing underground water was selected without sufficient preconsideration of geographical features, ground condition, influence of lowing underground water, and long-term cost of running maintenance so that the form of undrained tunnel was build having decreased construction characteristics and technically improper elements. The form of partial drainage is very difficult to manage structures of tunnel, because water leakage, water pressure causing cracks of lining concretes and scaling are constantly happened. so partial drainage suggest that setting reinforced Anchor Bolt to prevent buoyancy and should increase center drainage way up to height of railroad. Partial drainage suggest that holey pipe(${\phi}$350mm) manhole, drainage checking pipe manhole are should be regularly dredged, when changing roadbed(gravel${\rightarrow}$concrete) drainage checking pipe manhole should be build and setting a limitation of entering underground water's quantities. Beside drainage degree in changed section of structures causing instability of structures is continuous degree. so if efficient drainage way and the patterns of flaws, problems are considered in survey, it will be expected to have a advantage condition in maintenance part.

  • PDF