• Title/Summary/Keyword: 배수공법

Search Result 283, Processing Time 0.024 seconds

A study on hydraulic back analysis for an urban tunnel site and stability analysis based on hydro-mechanical coupling analysis (도심지 터널 용출수 발생구간에서의 수리 역해석 및 수리-역학 연계해석을 통한 안정성 해석 연구)

  • Park, Inn-Joon;Song, Myung-Gyu;Shin, Uyu-Soung;Park, Yong-Su
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.4
    • /
    • pp.397-404
    • /
    • 2008
  • Excessive amount of groundwater flowed into tunnel, while constructing Incheon international airport railway. Tunnel passes under subway line no. 2 with only 1.76 m below. To protect the existing structure, TRcM excavation method was applied. As station and construction shaft are already constructed, which are located back and forth of TRcM section, 86.4 ton per day of groundwater inflow is against expectation. To identify mechanism of excessive water inflow, hydraulic back analyses were performed. Then, hydro-mechanical coupled analysis were also performed with the hydrogeologic parameters identified, whose results are investigated for checking the stability of adjacent structures to the tunnel under construction. And a number of mechanical analyses were also performed to check the hydro-mechanical coupling effect. The result from the mechanical analysis shows that subsidence and tunnel ceiling displacement will be 0.85 mm and 1.32 mm. The result of hydro-mechanical couple analysis shows that subsidence and maximum tunnel ceiling displacement will be 1.2 mm and 1.72 mm. Additional displacements caused by groundwater draw down were identified, however, displacement is minute.

  • PDF

Weathering Properties and Slope Stability Evaluations of Bedrock under the Chokseongnu Pavilion, Jinjuseong Fortress, Korea (진주성 촉석루 성곽지반의 풍화특성과 사면안정성 평가)

  • Jo, Young-Hoon;Lee, Myeong-Seong;Lee, Sun-Myung;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.20
    • /
    • pp.89-103
    • /
    • 2007
  • The bedrock beneath the Chokseongnu pavilion consists of sandstone with alternate dark-gray to light-brown siltstone and dark-gray shale of the Jinju Formation, where bedding is well developed toward the Chokseongmun gate. Large to small joints and overbreak from the erosion weathering have been developed in the bedrock. Besides, water leakage from development of discontinuity planes, fragmentation of shale, crack and joint by tree roots are observed on the bedrock. While shale and siltstone showed high sensitivity in physical and chemical weathering, respectively, sandstone indicated the highest weathering sensitivity in both. As the results of structural stability analysis, the whole bedrock has high instability in wedge failures, and especially section No. II slope is more instable than section No. I. Therefore, it is necessary for the bedrock to be strengthened by improvement method for soft foundations and the surface reinforcement. The trees causing mechanical collapse of the bedrock should be also removed and a water flow prevention measure or a water exhaust are required.

  • PDF

Introduction of the Basin Sewerage Plan in Japan through Case Studies of the Lake Biwa Sewerage System (비와호 유역하수도 사례분석을 통한 일본 유역하수도계획의 소개)

  • Han, Mideok;Park, Bae Kyung;Park, Ji Hyoung;Kim, Yong Seok;Rhew, Doug Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.9
    • /
    • pp.533-541
    • /
    • 2015
  • We investigate the Japan's Master Plan of Comprehensive Sewerage System (JMPS) and Lake Biwa basin sewerage and suggest future development direction of the Watershed Sewerage System Maintenance Plan in Korea enforced on February 2, 2013. The JMPS is designed for compliance with the environmental standard for water quality under the Environmental Policy Act. The effluent standards applied in the master plan of Lake Biwa's Sewerage Plan for the Lake Biwa is tougher than the national standards. Therefore the Lake Biwa Baisn Sewerage System was the first in Japan to adopt facilities that perform advanced treatment for nitrogen and phosphorus removal. BOD, SS, T-N and T-P concentrations of discharge water of sewage are 0.9, 0.6, 5.5, 0.06 mg/L, respectively. Especially removal efficiency for BOD is 99.5 percent. It is necessary to study the diversification of the evaluation criteria, cost minimization approach, subsidy system improvement, economic concept of discharge load adjustment system and establishment of basin sewerage concept for the development of the basin sewerage plan in Korea.

A Study on the Applicability of Modified Cam-clay Model in Low Plastic Clays (저소성 점토의 수정 Cam-clay 모델 적용성에 관한 연구)

  • Lee, Song;Kim, Tae-Hwoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.247-256
    • /
    • 2003
  • FEM analyses which are based on modified Cam-clay theory have been generally used in such cases as analyses of stability and displacement fur embankment construction on soft clays. However, the Modified Cam Clay Model can generate some problems in anisotropic stress conditions of field because the critical state theory has been developed through many laboratory tests in isotropic conditions. Thus, the applicability on the prediction of undrained shear strength and pore water pressure which was based on the critical state theory was evaluated by triaxial tests and numerical analyses in isotropic and anisotropic conditions. Used samples often come out in domestic area, together with general low plastic clays which are showing dilatant behavior in shearing process. They were evaluated by laboratory tests and FEM based on MCCM. From the results of test and numerical analysis, the predictions of undrained strength in low plastic clays well coincided with each other in both isotropic and anisotropic conditions. However, the generation of porewater pressure was often overestimated during undrained shearing in anisotropic conditions. The results can generate the errors in the prediction of stress path of field sites during loading such as construction of embankment on soft clays because the field is subjected to anisotropic conditions during loading.

Estimation of Resistance Bias Factors for the Ultimate Limit State of Aggregate Pier Reinforced Soil (쇄석다짐말뚝으로 개량된 지반의 극한한계상태에 대한 저항편향계수 산정)

  • Bong, Tae-Ho;Kim, Byoung-Il;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.6
    • /
    • pp.17-26
    • /
    • 2019
  • In this study, the statistical characteristics of the resistance bias factors were analyzed using a high-quality field load test database, and the total resistance bias factors were estimated considering the soil uncertainty and construction errors for the application of the limit state design of aggregate pier foundation. The MLR model by Bong and Kim (2017), which has a higher prediction performance than the previous models was used for estimating the resistance bias factors, and its suitability was evaluated. The chi-square goodness of fit test was performed to estimate the probability distribution of the resistance bias factors, and the normal distribution was found to be most suitable. The total variability in the nominal resistance was estimated including the uncertainty of undrained shear strength and construction errors that can occur during the aggregate pier construction. Finally, the probability distribution of the total resistance bias factors is shown to follow a log-normal distribution. The parameters of the probability distribution according to the coefficient of variation of total resistance bias factors were estimated by Monte Carlo simulation, and their regression equations were proposed for simple application.

Study on the Change of Relative Humidity in Subsea Pipeline According to Drying Method (건조 공법에 따른 해저 파이프라인 내부 상대습도 변화 특성 연구)

  • Yang, Seung Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.406-413
    • /
    • 2022
  • The subsea pipeline pre-commissioning stage consists of the following processes: Flooding, Venting, Hydrotesting, Dewatering, Drying, and N2 Purging. Among these processes, drying and nitrogen purging processes are stipulated to reduce and maintain the relative humidity below dew point to prevent the generation of hydrate and the risk of gas explosion in the pipeline during operation. The purpose of this study is to develop an analysis method for the air drying and nitrogen purging process during pre-commissioning of the subsea pipeline, and to evaluate the applicability of the analysis method through comparison with on-site measurement results. An analysis method using Computational Fluid Dynamics (CFD) was introduced and applied as a method for evaluating the relative humidity inside a subsea pipeline, and it was confirmed that analysis results were in good agreement with the on-site measurement results for the air drying and nitrogen purging process of the offshore pipeline. If the developed air drying and nitrogen purging analysis method are used as pre-engineering tools for pre-commissioning of subsea pipelines in the future, it is expected to have a significant impact on the improvement of work productivity.

A Study on Clogging during Installation of Compaction Pile (다짐말뚝 시공 시 공극 막힘 현상 분석 연구)

  • Choi, Jeong Ho;Park, Seong Jin;Choo, Yun Wook;Kim, Il Gon;Kim, Byeong Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.4
    • /
    • pp.33-45
    • /
    • 2022
  • A series of model tests were performed in this study to demonstrate the clogging mechanism created during the installation of a compaction pile to improve soft ground. The application of an air-jet to extrude sand or aggregates from a casing during the installation of a compaction pile imposes a remarkably high-pressure difference between the composite soil layers of clay and sand (or aggregates), resulting in severe clogging. Therefore, a one-dimensional testing system was developed to simulate composite soil layers consisting of clay and sand (or aggregates) and to apply a high-pressure differential at both boundaries, thus replicating the extrusion process used in compaction pile installation. Herein, the performance of two construction materials for compaction piles of crushed stone and grading-controlled aggregates was compared. A series of one-dimensional model tests were performed under multiple pressure settings, with clogging depth and permeability measured in each case. Results indicate that, blinding clogging mechanisms and blocking defined by previous studies were observed for crushed stone, and a new mechanism of "infiltration" was revealed and defined. Whereas, the controlled aggregates performed excellently against clogging because only blinding was observed.

Evaluation of Consolidation Characteristics Considering the Mixed Gradation Ratio of Soft Ground (연약지반의 입도 혼합비를 고려한 압밀특성평가)

  • Park, Yeong-Mog;Yun, Sang-Jong;Chea, Jong-Gil
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.99-110
    • /
    • 2009
  • In order to provide the design criteria, the characteristics of consolidation for soft ground improvement have been investigated using the field banking test performed by the vertical drain method at the northern container section in Busan New Port. Field test results indicated that the estimated degree of consolidation in design stage decreased by about 7% compared with the measured one. This difference is attributed to the fact that the conservative geological properties were applied with relatively high amount of maximum clay mixture ratio during the design stage. Based on this findings, another laboratory oedometer test was implemented to consider various combination of mixture ratio. It was found that the consolidation degree increased in accordance with the increase of sand/silt mixture ratio. Also, the proportion of 10%, 50%, and 40% for sand, silt, and clay, respectively, was observed as the best combination of mixture ratio to the actual measurement, which is very similar to the average grain size distribution in the banking test area. Therefore, it is suggested that the overall geological characteristics as well as the grain size distribution should be considered in design stage to improve the soft ground that contains mixture of sand, silt, and clay.

The Experimental Study on Electrokinetic Injection Improvement of Low Permeable Ground (저 투수성 지반의 동전기 주입 개량의 실험 연구)

  • Kim, Soo-Sam;Han, Sang-Jae;Kim, Ki-Nyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2C
    • /
    • pp.99-108
    • /
    • 2006
  • In this study a series of bench scale test are conducted to increase the undrained shear strength of clayey soils using by Electro-kinetic injection stabilization method. The sodium silicate was injected in anode reservoir and its concentration was changed with 500, 1000, 1500, 2000, 2500mM for configuration of applicability of Electro-kinetic injection stabilization method. Also, the treatment time and electric gradient was changed to acquire the optical influence factors. For increasing the shear strength to maximum values, the calcium chloride and aluminium hydroxide, which concentration was changed with 50, 250, 500, 750, 1000mM, were added at anode reservoir for 5 days after the treatment of sodium silicate in 5 days as the 2nd additives. The test of results in determination of sodium silicate concentration show that the undrained shear strength at each point had a tendency to converge into a constant value when the concentration of sodium silicate came to 1000mM and above. The maximum shear strength increasement was 800% compared with initial value. After a series of test, the electric gradient and treatment time for application of electric fielld were 1V/cm and 6 days. In case of 2nd additives test, the concentration for maximum shear strength is 250mM in all additives and the effects of shear strength improvement was developed approximately 20~30% in comparison to addition of single injection material.

Experimental Study of Flip-Bucket Type Hydraulic Energy Dissipator on Steep slope Channel (긴구배수로 감세공의 Filp Bucket형 이용연구)

  • 김영배
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.1
    • /
    • pp.2206-2217
    • /
    • 1971
  • Spillway and discharge channel of reservoirs require the Control of Large volume of water under high pressure. The energies at the downstream end of spillway or discharge channel are tremendous. Therefore, Some means of expending the energy of the high-velocity flow is required to prevent scour of the riverbed, minimize erosion, and prevent undermining structures or dam it self. This may be accomplished by Constructing an energy dissipator at the downstream end of spillway or discharge channel disigned to dissipated the excessive energy and establish safe flow Condition in the outlet channel. There are many types of energy dissipators, stilling basins are the most familar energy dissipator. In the stilling basin, most energies are dissipated by hydraulic jump. stilling basins have some length to cover hydraulic jump length. So stilling basins require much concrete works and high construction cost. Flip bucket type energy dissipators require less construction cost. If the streambed is composed of firm rock and it is certain that the scour will not progress upstream to the extent that the safety of the structure might be endangered, flip backet type energy dissipators are the most recommendable one. Following items are tested and studied with bucket radius, $R=7h_2$,(medium of $4h_2{\geqq}R{\geqq}10h_2$). 1. Allowable upstream channel slop of bucket. 2. Adequate bucket lip angle for good performance of flip bucket. Also followings are reviwed. 1. Scour by jet flow. 2. Negative pressure distribution and air movement below nappe flow. From the test and study, following results were obtained. 1. Upstream channel slope of bucket (S=H/L) should be 0.25<H/L<0.75 for good performance of flip bucket. 2. Adequated lip angle $30^{\circ}{\sim}40^{\circ}$ are more reliable than $20^{\circ}{\sim}30^{\circ}$ for the safety of structures.

  • PDF