DOI QR코드

DOI QR Code

Estimation of Resistance Bias Factors for the Ultimate Limit State of Aggregate Pier Reinforced Soil

쇄석다짐말뚝으로 개량된 지반의 극한한계상태에 대한 저항편향계수 산정

  • Bong, Tae-Ho (Institute of Construction and Environmental Engrg., Seoul National Univ.) ;
  • Kim, Byoung-Il (Dept. of Civil and Environmental Engrg., Myongji Univ.) ;
  • Kim, Sung-Ryul (Dept. of Civil and Environmental Engrg., Seoul National Univ.)
  • 봉태호 (서울대학교 건설환경종합연구소) ;
  • 김병일 (명지대학교 토목환경공학과) ;
  • 김성렬 (서울대학교 건설환경공학부)
  • Received : 2019.03.29
  • Accepted : 2019.05.05
  • Published : 2019.06.30

Abstract

In this study, the statistical characteristics of the resistance bias factors were analyzed using a high-quality field load test database, and the total resistance bias factors were estimated considering the soil uncertainty and construction errors for the application of the limit state design of aggregate pier foundation. The MLR model by Bong and Kim (2017), which has a higher prediction performance than the previous models was used for estimating the resistance bias factors, and its suitability was evaluated. The chi-square goodness of fit test was performed to estimate the probability distribution of the resistance bias factors, and the normal distribution was found to be most suitable. The total variability in the nominal resistance was estimated including the uncertainty of undrained shear strength and construction errors that can occur during the aggregate pier construction. Finally, the probability distribution of the total resistance bias factors is shown to follow a log-normal distribution. The parameters of the probability distribution according to the coefficient of variation of total resistance bias factors were estimated by Monte Carlo simulation, and their regression equations were proposed for simple application.

이 연구에서는 쇄석말뚝공법의 한계상태설계법 적용을 위하여 양질의 현장재하시험 자료로부터 저항편향계수의 통계적 특성을 분석하고 지반 불확실성 및 시공 오차를 고려한 총 저항편향계수를 산정하였다. 저항편향계수 산정을 위한 예측모델은 기존 모델들에 비하여 높은 예측성능을 보인 Bong and Kim(2017)의 MLR 모형을 활용하였으며 그 적합성을 평가하였다. 저항편향계수의 확률분포를 산정하기 위하여 카이제곱 적합도 검정을 수행하였으며 정규분포가 가장 적합한 것으로 나타났다. 공칭저항의 총 변동성은 점토의 비배수전단강도 및 쇄석말뚝 시공 시 발생할 수 있는 시공 오차에 대한 불확실성을 포함하여 산정하였다. 최종적으로 총 저항편향계수의 확률분포는 로그정규분포를 따르는 것으로 나타났다. 총 저항편향계수의 변동성에 따른 확률분포의 매개변수는 Monte Carlo 시뮬레이션을 통하여 산정하였으며, 간편한 적용을 위하여 이에 대한 회귀식을 제안하였다.

Keywords

GJBGC4_2019_v35n6_17_f0001.png 이미지

Fig. 1. Probability of failure in reliability-based design

GJBGC4_2019_v35n6_17_f0002.png 이미지

Fig. 2. Comparison of estimated and observed ultimate bearing capacity

GJBGC4_2019_v35n6_17_f0003.png 이미지

Fig. 3. Relationship between the predicted ultimate bearing capacity and the resistance bias

GJBGC4_2019_v35n6_17_f0004.png 이미지

Fig. 4. Cumulative distribution of sample resistance biases and fitted normal distribution

GJBGC4_2019_v35n6_17_f0005.png 이미지

Fig. 5. P-P plot for diagnosing normal distribution of sample resistance biases

GJBGC4_2019_v35n6_17_f0006.png 이미지

Fig. 6. Probability density function of total resistance according to COVsu of 10, 20, and 30%

GJBGC4_2019_v35n6_17_f0007.png 이미지

Fig. 7. Relationships between parameters for probability distribution of ln(λR) and COVTotal

Table 1. Summary statistics for proposed MLR

GJBGC4_2019_v35n6_17_t0001.png 이미지

Table 2. Performance of MLR model by Bong and Kim (2017)

GJBGC4_2019_v35n6_17_t0002.png 이미지

Table 3. Summary of results of Chi-square test

GJBGC4_2019_v35n6_17_t0003.png 이미지

Table 4. Statistic properties of total resistance bias

GJBGC4_2019_v35n6_17_t0004.png 이미지

References

  1. AASHTO (2012), AASHTO LRFD Bridge Design Specifications, 6th ed, American Association of State and Highway Transportation Officials, Washington, DC, USA.
  2. Bong, T. H. and Kim, B. I. (2017), "Prediction of Ultimate Bearing Capacity of Soft Soils Reinforced by Gravel Compaction Pile Using Multiple Regression Analysis and Artificial Neural Network", Journal of The Korean Geotechnical Society, Vol.33, No.6, pp.27-36. https://doi.org/10.7843/KGS.2017.33.6.27
  3. Elkateb, T., Chalaturnyk, R., and Robertson, P. K. (2002), "An Overview of Soil Heterogeneity: Quantification and Implications on Geothchnical Field Problems", Canadian Geotechnical Journal, Vol.40, No.1, pp.1-15. https://doi.org/10.1139/t02-090
  4. Greenwood, D. A. (1970), "Mechanical Improvement of Soils Below Ground Surface", Proceedings of the Ground Engineering Conference, Institution of Civil Engineers, London, pp.11-22.
  5. Han, Y. B. (2013), "Analysis of LRFD Resistance Factors for Single Aggregate Piers in Cohesive Soil", MS. thesis, Dongguk university, Seoul, Republic of Korea.
  6. Han, Y. B., Park, J. M., and Jang, Y. S. (2012), "Evaluation of the Resistance Bias Factors to Develop LRFD for Gravel Compaction Piles", J. of the Korean Geotechnical Society, Vol.28, No.2, pp. 43-55. https://doi.org/10.7843/kgs.2012.28.2.43
  7. Huffman, J. C., Martin, J. P., and Stuedlein, A. W. (2015), "Assessment of Reliability-based Serviceability Limit State Procedures using Full-Scale Loading Tests", Proceedings of the 5th Geotechnical Safety and Risk, Rotterdam, the Netherlands, pp.313-319.
  8. Hughes, J. M. O. and Withers, N. J. (1974), "Reinforcing of Soft Cohesive Soils with Stone Column", Ground Engineemg, Vol.7, No.3, pp.42-49.
  9. Hughes, J. M. O., Withers, N. J., and Greenwood, D. A. (1975), "A Field Trial of the Reinforcing Effect of a Stone Column in Soil", Geotechnique, Vol.25, No.1, pp.31-44. https://doi.org/10.1680/geot.1975.25.1.31
  10. Kim, B. I. and Lee, S. H. (2005), "Comparison of Bearing Capacity Characteristics of Sand and Gravel Compaction Pile Treated Ground", KSCE Journal of Civil Engineering, Vol.9, No.3, pp.197-203. https://doi.org/10.1007/BF02829050
  11. Lacasse, S. and Nadim, F. (1996), "Uncertainties in Characteristic Soil Properties", Proceedings of Uncertainty 96, Geotechnical Special Publication No. 58, Vol.1, pp.49-75.
  12. Mitchell, J. K. (1981), "Soil Improvement-State-of-the-art Report", Proceedings of the 10th Soil Mechanics and Foundation Engineering, Session 12, Int. Society of Soil Mechanics and Foundation Engineering, London, Vol.4, pp.506-565.
  13. Paikowsky, S. G. (2002), "Load and Resistance Factor Design (LRFD) for Deep Foundations", Proceedings of the IWS Kamakura 2002 Conference, Tokyo, Japan, pp.59-94.
  14. Park, J. M., Han, Y. B., and Jang, Y. S. (2013), "Estimation of Ultimate Bearing Capacity of Gravel Compaction Piles Using Nonlinear Regression Analysis", J. Korean Society of Coastal and Ocean Engineers, Vol.25, No.2, pp.112-121. https://doi.org/10.9765/KSCOE.2013.25.2.112
  15. Stuedlein, A. W. (2008), "Bearing capacity and displacement of spread footings on aggregate pier reinforced clay", PhD. thesis, University of Washington, Seattle.
  16. Stuedlein, A. W. and Holtz, R. D. (2012), "Analysis of Footing Load Tests on Aggregate Pier Reinforced Clay", J. Geotech. Geoenviron. Eng., Vol.138, No.9, pp.1091-1103. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000677
  17. Stuedlein, A. W. and Holtz, R. D. (2013), "Bearing Capacity of Spread Footings on Aggregate Pier Reinforced Clay", J. Geotech. Geoenviron. Eng., Vol.139, No.1, pp.49-58. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000748
  18. Stuedlein, A. W., Huffman, J. C., and Ressy, S. (2014), "Reliability-based ultimate limit state design of spread footings on aggregate-pier-reinforced clay", Ground Improvement, Vol.167, No.14, pp. 291-300. https://doi.org/10.1680/grim.13.00042
  19. You, Y. K., Lim, H. D., and Park J. M. (2014), "Target Reliability Index of Single Gravel Compaction Piles for Limit State Design", J. the Korean Geo-Environmental Society, Vol.15, No.2, pp.5-15.