• Title/Summary/Keyword: 배근

Search Result 365, Processing Time 0.028 seconds

Evaluation on Shear Behaviors of the Dapped Ends of Domestic Composite Double Tee Slabs under the Short-Term Loading (단기하중하의 국내 합성 더블티 슬래브 댑단부 전단거동 평가)

  • 유승룡
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.774-781
    • /
    • 2002
  • Shear behaviors of eight dapped ends of four full-scale domestic single-tee slabs were evaluated. The dapped ends with 10cm topping concrete were designed based on live load requirements for the domestic parking lot of m 500kgf/㎡ and for the large market of 1,200 kgf/㎡. All specimens were designed by the ACI 318-99 design. The variations of the experiment were the shape of hanger reinforcements as followings: 1) general PCI design method(currently used in domestic), 2) 90 degree bent-up, 3) 60 degree bent-up. All experiments were conducted with 1.2 m shear span. The results obtained in this study were 1) all specimens fully complied with the shear strength requirements as specified by ACI 318-99 except for one strand bond slip specimen, 2)a specimen with the 60 degree bent up hanger reinforcing detail showed the best shear behaviors under full service and ultimate load, and 3)a specimen with the 90 degree bent up hanger reinforcing detail resulted in the worst shear behaviors.

Stress Analysis of PS Anchorage Zone Using Ultra High Performance Concrete (UHPC를 적용한 PS 정착부의 응력해석)

  • Kim, Jee Sang;Choi, Yoon Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1349-1360
    • /
    • 2013
  • The post-tensioned anchorage zones of normal concrete have larger cross sections because of congested reinforcements to resist high bearing and bursting stresses. The high compressive and tensile strength of newly developed UHPC (Ultra High Performance Concrete) may reduce the cross sectional dimensions and simplify the reinforcement details, if used for post-tensioned members. The Finite Element Analysis was performed to evaluate the mechanical behavior of post-tensioned anchorage zones using UHPC without anchorage plates and confining reinforcements. The results show that the maximum bursting stresses are less than the values given in current design code without failure due to vertical cracks. The location of maximum bursting stresses were at 0.2 times of width of the models. The bursting force from FEA is less than that is obtained using simplified formular in Korean Bridge Design Code.

Structural Performance of Beam-Column Connections Using 51 mm Diameter with Different Anchorage Details (51 mm 대구경 철근을 사용한 외부 보-기둥 접합부의 정착상세별 구조성능 평가)

  • Kim, Jung-Yeob;Jung, Hyung-Suk;Chun, Sung-Chul;Kim, In-Ho;Choi, Chang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.201-208
    • /
    • 2017
  • In exterior beam-column joints, hooked bars are used for anchorage, but usage of high-strength and large-diameter bars increases, headed bar is preferred for solving steel congestion and difficulty in construction. To investigate the structural performance of headed bars, Six exterior beam-column joints were tested under cyclic loading. Tests parameter were the anchorage methods and concrete strength. The test results indicate that behavior of headed bar specimens shows similar performance with hooked bar specimens. All specimens failed by flexural failure of the beam. Headed bar specimens shows better performance in anchorage and joint shear. All specimens were satisfied the criteria of ACI374.1-05. Test results indicate that use of headed bar in exterior beam column joint is available.

Evaluation on Shear Performance of the Dapped Ends of Precast Gerber′s U-Beams (프리캐스트 게르버 U형보의 댑 전단 거동평가)

  • 박현석;유승룡
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.492-502
    • /
    • 2002
  • The dapped ends of the Gerber's beam were designed by PCI(Prestressed Concrete Institute) and CPCI(Canadian Prestressed Concrete Institute) methods. The depths of nibs with precast and topping concrete, which were halves of the total beam depth, were 77 cm md 18.2 cm, respectably. Shear tests were performed on four full scale beam ends. All specimens designed by PCI and CPCI methods showed crackings at the re-entrant coner of dap before the 32 % of full service design loading, and failed at the load level higher than their design strength but less than their calculated nominal strength. The specimens with increased hanger reinforcement show more effective in development of initial crackings, more ductile in failure with distributed crackings, and failed in higher strength than those of PCI requirement. The tested specimens designed by CPCI method were more ductile in failure than those of the PCI methods.

An Experimental Study on the Flexural Behavior of Reinforced Concrete Columns Strengthened with Wire Rope and T-Shape Steel Plate units (와이어로프와 T형 플레이트에 의해 보강된 RC 기둥의 휨 거동에 대한 실험적 연구)

  • Sim, Jae-Il;Yang, Keun-Hyeok;Oh, Sung-Jin;Byun, Hang-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.153-156
    • /
    • 2008
  • The objective of the present study is to evaluate the flexural behavior of reinforced concrete columns externally strengthened with wire rope and T-shape steel plate units. Three strengened columns and a control unstrengthened column were tested under cyclic lateral load simultaneously subjected to a constant axial load. All columns had same section size, and the arrangement of longitudinal reinforcement and internal hoop. The spacing of wire rope range from 40 ${\sim}$ 80mm, which corresponds from 1.0 ${\sim}$ 0.5, respectively, times the minium amount of hoop specified in seismic design of ACI 318-05. Test results showed that the proposed unbonded-type strengthening procedure is very effective for improving the flexural ductility of reinforced concrete columns.

  • PDF

Evaluation of Effective Section Area of Shear Steel in Reinforced Concrete Circular Columns (철근콘크리트 원형기둥의 전단철근 유효단면적 평가)

  • 김장훈
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.81-88
    • /
    • 1999
  • In order to properly evaluate the shear strength of reinforced concrete circular columns due to the transverse shear reinforcement, the average of fractions of forces generated along the circular transverse hoops across the shear failure plane in the loading direction is calculated. For this, the center-to-center diameter of circular transverse hoops. spacing and the crack angle measured to the column longitudinal axis are considered. Using these variables, an equation representing the effective section area of circular transverse shear steel is proposed. The study result shows that the constant parameter. used for the calculation of the effective section area of circular hoops over the last 10 years, should not universally be applied any more. The use of the constant parameter may not seriously do harm to the evaluation of shear strength for circular columns with non-seismically designed transverse hoop reinforcement, since it gives slightly conservative results. However. for well-confined circular columns with close spacing or circular steel jacketing. it gives about 20% overestimation of the shear capacity contributed by the transverse hoop steel.

Structural Behavior of Hybrid Steel Fiber-Reinforced Ultra High Performance Concrete Beams Subjected to Bending (휨을 받는 하이브리드 강섬유 보강 초고성능 콘크리트 보의 구조 거동)

  • Yang, In-Hwan;Kim, Kyoung-Chul;Joh, Chang-Bin
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.771-778
    • /
    • 2014
  • This paper concerns the flexural behavior of hybrid steel fiber-reinforced ultra high performance concrete (UHPC) beams. It presents experimental research results of hybrid steel fiber-reinforced UHPC with steel fiber content of 1.5% by volume and steel reinforcement ratio of less than 0.02. This study aims at providing realistic information about UHPC beams in bending in order to establish a reasonable prediction model for flexural resistance in structural code in the future. The experimental results show that hybrid steel fiber-reinforced UHPC is in favor of cracking resistance and ductility of beams. The ductility indices range through 9.2 to 15.2, which means high ductility of UHPC. Also, the flexural capacity of beam which contains stirrups in pure bending zone is similar to that of beam which does not contain stirrups in pure bending zone. This result represents that the flexural capacity is not affected by the presence of stirrups whose spacing is 150 mm in bending zone.

A Numerical Study on Flexural Strength with the Spreading of Upper Reinforcement of Girder into the Adjoining Slab (보 상부철근의 슬래브 내 분산배근에 따른 휨강도의 수치해석적 연구)

  • Park, Jung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1179-1185
    • /
    • 2007
  • The study of girder-to-column joints under experiment and numerical analysis was carried out to evaluate change of the flexural capacity of the joints with the 2-layer upper reinforcement of girder within rectangular section and the single-layered upper reinforcement at the girder flange. According to the analysis results using the flange width, the flange thickness and the location of reinforcements in the upper flange as variables, in the models with a same effective width, the increasing rate of capacity has nothing to do with the flange width with a same effective width. However, the capacity of the models with the upper reinforcements arranged close to the rectangular beam section is larger than that of the models with the upper reinforcements arranged remotely from the rectangular section. If the range of arrangement fur reinforcement exceeds the effective width, despite of increasing the flange thickness, the capacity is not increased.

  • PDF

Parametric Crack and Flexural Strength Analyses of Concrete Slab For Railway Structures Using GFRP Rebar (GFRP 보강근을 적용한 교량용 콘크리트 도상슬래브의 균열 및 휨강도 변수 해석)

  • Choe, Hyeong-Bae;Lee, Sang-Youl
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.363-370
    • /
    • 2021
  • In this paper, we presented an optimized crack and flexural strength analysis of a glass-fiber reinforced polymer (GFRP) rebar, used as reinforcements for in-site railway concrete slabs. The insulation performance of a GFRP rebar has the advantage of avoiding the loss of signal current in an audio frequency (AF) track circuit. A full-scale experiment, and three-dimensional finite element simulation results were compared to validate our approaches. Parametric numerical results revealed that the diameters and arrangements of the GFRP rebar had a significant effect on the flexural strength and crack control performances of the concrete track slabs. The results of this study could serve as a benchmark for future guidelines in designing more efficient, and economical concrete slabs using the GFRP rebar.

The Effect of Green Roof Load on the Structural Design of Roof Slab of LH Housing and Service Facilities (옥상녹화하중이 LH 공동주택 및 부대복리시설의 옥상층 슬래브 설계에 미치는 영향)

  • Lee, Bum-Sik;Kwon, Hyuck-Sam;Kim, Jung-Gon;Kim, Ji-Hyeon
    • Land and Housing Review
    • /
    • v.7 no.1
    • /
    • pp.53-63
    • /
    • 2016
  • This paper contains structural analysis and design regarding how three types of green roof load affect roof slab design of LH housing and facilities. Based on the Structural analysis, an appropriate Roof slab rebar guideline and roof slab thickness have been set up for the green roof load which takes effect on structural design of roof slab. Result of structural analysis and design has been made as follows. Roof slabs can arrange the slab rebar(D10) within the 200~250mm disregarding the types of the green roof load and the pattern of green roof load; also, slab thickness can be designed within 150mm. Moreover, even if the concrete design strength of roof slab changes to 24, 27, and 30MPa, D10 rebar can still be arranged within 200~250mm, and 150mm for slab thickness. Two-way slab of commercial building was appeared to be arranged by slab rebar(D10) within 200mm and 150mm for slab thickness disregarding the soil type or the soil thickness of green roof.