• Title/Summary/Keyword: 배관 감육

Search Result 120, Processing Time 0.023 seconds

Estimation Method of Local Elastic-Plastic Strain at Thinning Area of Straight Pipe Under Tension Loading (인장하중을 받는 직선 배관 감육부의 국부 탄소성 변형률 평가 방법)

  • An Joong-Hyok;Kim Yun-Jae;Yoon Kee-Bong;Ma Young-Wha
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.533-542
    • /
    • 2006
  • In order to assess the integrity of pipes with local thinning area, the plastic strain as well as the elastic strain at the root of thinned region are required particularly when fluctuating load is applied to the pipe. For estimating elastic-plastic strain at local wall thinning area in a straight pipe under tensile load, an estimation model with idealized fully circumferential constant depth wall thinning area is proposed. Based on the compatibility and equilibrium equations a nonlinear estimation equation, from which local elastic-plastic strain can be determined as a function of pipe/defect geometry, material and the applied strain was derived. Estimation results are compared with those from detailed elastic-plastic finite element analysis, which shows good agreements. Noting that practical wall thinning in nuclear piping has not only a circular shape but also a finite circumferential length, the proposed solution for the ideal geometry is extended based on two-dimensional and three-dimensional numerical analysis of pipes with circular wall thinning.

Development of Wall Thinning Distinction Method using the Multi-inspecting UT Data of Carbon Steel Piping (탄소강배관 다중 UT 측정두께를 활용한 감육여부 판별법 개발)

  • Hwang, Kyeong Mo;Yun, Hun;Lee, Chan Kyoo
    • Corrosion Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.173-178
    • /
    • 2012
  • To manage the wall thinning of carbon steel piping in nuclear power plants, the utility of Korea has performed thickness inspection for some quantity of pipe components during refueling outages and determined whether repair or replacement after evaluating UT (Ultrasonic Test) data. When the existing UT data evaluation methods, such as Band, Blanket, PTP (Point to Point) Methods, are applied to a certain pipe component, unnecessary re-inspecting situations may be generated even though the component does not thinned. In those cases, economical loss caused by repeated inspection and problems of maintaining the pipe integrity followed by decreasing of newly inspected components may be generated. EPRI (Electric Power Research Institute) in USA has suggested several statistical methods, TPM (Total Point Method), LSS (Least Square Slope) Method, etc. to distinguish whether multiple inspecting components have thinned or not. This paper presents the analysis results for multiple inspecting components over three times based on both NAM (Near Area of Minimum) Method developed by KEPCO-E&C and the other methods suggested by EPRI.

Failure Behavior of T-joint Pipe with Outer Local Wall Thinning under Internal Pressure (내압을 받는 외부 국부 감육 T-joint 배관의 파손거동)

  • Kim, Soo-Young;Nam, Ki-Woo
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.80-87
    • /
    • 2014
  • The pipelines are apt to erosion or corrosion because of the high-speed flow of water and steam with high temperatures or high pressures. This study was carried out a finite element analysis (FEA) and an experimental for the fracture behavior of T-joint pipes with local wall thinning under internal pressure. Local wall thinning was machined on the pipes in order to simulate erosion and corrosion of the metal. The configurations of the eroded area included an eroded ratio of d/t=0.80~0.963 and an eroded length of l=25 mm, 50 mm, and 102 mm. Three-dimensional elastic-plastic analyses were also carried out using FEA, which accurately simulates failure behaviors. In regards to the relationship between pressure and eroded, the criterion that indicates what can be used safely under operating pressure and design pressure were obtained from FEA. The FEA results were in relatively good agreement with that of the experiment.

Effects of alloys and flow velocity on welded pipeline wall thinning in simulated secondary environment for nuclear power plants (원전 2차계통수 모사 환경에서 용접배관 감육 특성에 미치는 재료 및 유속의 영향)

  • Kim, Kyung Mo;Choeng, Yong-Moo;Lee, Eun Hee;Lee, Jong Yeon;Oh, Se-Beom;Kim, Dong-Jin
    • Corrosion Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.245-252
    • /
    • 2016
  • The pipelines and equipments are degraded by flow-accelerated corrosion (FAC), and a large-scale test facility was constructed for simulate the FAC phenomena in secondary coolant environment of PWR type nuclear power plants. Using this facility, FAC test was performed on weld pipe (carbon steel and low alloy steel) at the conditions of high velocity flow (> 10 m/s). Wall thickness was measured by high temperature ultrasonic monitoring systems (four-channel buffer rod type and waveguide type) during test period and room temperature manual ultrasonic method before and after test period. This work deals with the complex effects of flow velocity on the wall thinning in weld pipe and the test results showed that the higher flow velocity induced different increasement of wall thinning rate for the carbon steel and low alloy steel pipe.

Criterion for Failure of Internally Wall Thinned Pipe Under a Combined Pressure and Bending Moment (내압과 굽힘의 복합하중에서 내부 감육배관의 손상기준)

  • Kim, Jin-Weon;Park, Chi-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.52-60
    • /
    • 2002
  • Failure criterion is a parameter to represent the resistance to failure of locally wall thinned pipe, and it depends on material characteristics, defect geometry, applied loading type, and failure mode. Therefore, accurate prediction of integrity of wall thinned pipe requires a failure criterion adequately reflected the characteristics of defect shape and loading in the piping system. In the present study, the finite element analysis was performed and the results were compared with those of pipe experiment to develop a sound criterion for failure of internally wall thinned pipe subjected to combined pressure and bending loads. By comparing the predictions of failure to actual failure load and displacement, an appropriate criterion was investigated. From this investigation, it is concluded that true ultimate stress criterion is the most accurate to predict failure of wall thinned pipe under combined loads, but it is not conservative under some conditions. Engineering ultimate stress estimates the failure load and displacement reasonably for al conditions, although the predictions are less accurate compared with the results predicted by true ultimate stress criterion.

Comparison of Wall Thinning Analysis Results between CHECWORKS and ToSPACE (CHECWORKS와 ToSPACE 프로그램의 배관감육 해석결과 비교)

  • Hwang, Kyeongmo;Yun, Hun;Seo, Hyeokki
    • Corrosion Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.317-323
    • /
    • 2018
  • Assumptions have always been that wall thinning on the secondary side piping in nuclear power plants is mostly caused by Flow-Accelerated Corrosion (FAC). Recent studies have showed that wall thinning on the secondary side piping is caused by Liquid Droplet Impingement Erosion (LDIE), Solid Particle Erosion (SPE), cavitation, and flashing. To manage those aging mechanisms, several software such as CHECWORKS, COMSY, and BRT-CICERO have been used in nuclear power plants. Korean nuclear power plants have been using the CHECWORKS program since 1996 to date. However, many site engineers have experienced a lot of inconveniences and problems in using the CHECWORKS program. In order to work through the inconveniences and to remedy problems, KEPCO-E&C has developed a "3D-based pipe wall thinning management program (ToSPACE)" based on the experience of over 30 years in relation to the pipe wall thinning management. This study compares the results of FAC and LDIE analysis using both the CHECWORKS and ToSPACE programs with respect to validation of the wall thinning analysis results.

Investigation of Local Flow Parameters Caused by Flow Acceleration Corrosion Downstream of an Orifice in a Piping System (배관계 오리피스 하류에서 유동가속부식으로 인한 국소 유동 파라미터에 대한 조사)

  • Kim, Kyung-Hoon;Cho, Yun-Su;Kim, Hyung-Joon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.7
    • /
    • pp.377-385
    • /
    • 2013
  • In this study, the performance of an impeller according to blade length and pitch angle was studied experimentally by building a variable pitch impeller while changing blade length to review the effect of blade length and pitch angle on a fan's performance. The pitch angle was changed in six steps from $20^{\circ}{\sim}45^{\circ}$ at intervals of $5^{\circ}$ while the blade lengths were changed to 90 mm, 100 mm, 110 mm and 120 mm with an identical airfoil shape while carrying out the experiment. The results are summarized as follows : The air flow per static pressure of axial fans increased linearly with increase of pitch angle, but the high static pressure showed a decrease at a pitch angle of $35^{\circ}$. The shaft power increased proportionally to the pitch angle at all blade lengths; the larger the pitch angle, the larger the measured increase of shaft power. This is because the drag at the fan's front increases with the pitch angle. In the axial fans considered in this research, the flow and incre.

Reliability-Based Structural Integrity Assessment of Wall-Thinned Pipes Using Partial Safety Factor (부분안전계수를 이용한 감육배관의 신뢰도 기반 건전성 평가)

  • Lee, Jae-Bin;Huh, Nam-Su;Park, Chi-Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3_1spc
    • /
    • pp.518-524
    • /
    • 2013
  • Recently, probabilistic assessments of nuclear power plant components have generated interest in the nuclear industries, either for the efficient inspection and maintenance of older nuclear plants or for improving the safety and cost-effective design of newly constructed nuclear plants. In the present paper, the partial safety factor (PSF) of wall-thinned nuclear piping is evaluated based on a reliability index method, from which the effect of each statistical variable (assessment parameter) on a certain target probability is evaluated. In order to calculate the PSF of a wall-thinned pipe, a limit state function based on the load and resistance factor design (LRFD) concept is first constructed. As for the reliability assessment method, both the advanced first-order second moment (AFOSM) method and second-order reliability method (SORM) are employed to determine the PSF of each probabilistic variable. The present results can be used for developing maintenance strategies considering the priorities of input variables for structural integrity assessments of wall-thinned piping, and this PSF concept can also be applied to the optimal design of the components of newly constructed plants considering the target reliability levels.

A Study on the Development of Prediction System for Pipe Wall Thinning Caused by Liquid Droplet Impingement Erosion (액적충돌침식으로 인한 배관감육 예측체계 구축에 관한 연구)

  • Kim, Kyung-Hoon;Cho, Yun-Su;Hwang, Kyeong-Mo
    • Corrosion Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.125-131
    • /
    • 2013
  • The most common pipe wall thinning degradation mechanisms that can occur in the steam and feedwater systems are FAC (Flow Acceleration Corrosion), cavitation, flashing, and LDIE (Liquid Droplet Impingement Erosion). Among those degradation mechanisms, FAC has been investigated by many laboratories and industries. Cavitation and flashing are also protected on the piping design phase. LDIE has mainly investigated in aviation industry and turbine blade manufactures. On the other hand, LDIE has been little studied in NPP (Nuclear Power Plant) industry. This paper presents the development of prediction system for pipe wall thinning caused by LDIE in terms of erosion rate based on air-water ratio and material. Experiment is conducted in 3 cases of air-water ratio 0.79, 1.00, and 1.72 using the three types of the materials of A106B, SS400, and A6061. The main control parameter is the air-water ratio which is defined as the volumetric ratio of water to air (0.79, 1.00, 1.72). The experiments were performed for 15 days, and the surface morphology and hardness of the materials were examined for every 5 days. Since the spraying velocity (v) of liquid droplets and their contact area ($A_c$) on specimens are changed according to the air-water ratio, we analyzed the behavior of LDIE for the materials. Finally, the prediction equations(i.e. erosion rate) for LDIE of the materials were determined in the range of the air-water ratio from 0 to 2%.

Measuring Plate Thickness Using Spatial Local Wavenumber Filtering (국소 공간 웨이브넘버 필터링 기법을 이용한 평판 구조물 두께 측정)

  • Kang, To;Lee, Jeong Han;Han, Soon Woo;Park, Jin Ho;Park, Gyuhae;Jeon, Jun Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.370-376
    • /
    • 2016
  • Corrosion on the surface of a structure can generate cracks or cause walls to thin. This can lead to fracturing, which can eventually lead to fatalities and property loss. In an effort to prevent this, laser imaging technology has been used over the last ten years to detect thin-plate structure, or relatively thin piping. The most common laser imaging was used to develop a new technology for inspecting and imaging a desired area in order to scan various structures for thin-plate structure and thin piping. However, this method builds images by measuring waves reflected from defects, and subsequently has a considerable time delay of a few milliseconds at each scanning point. In addition, the complexity of the system is high, due to additional required components, such as laser-focusing parts. This paper proposes a laser imaging method with an increased scanning speed, based on excitation and the measurement of standing waves in structures. The wavenumber of standing waves changes at sections with a geometrical discontinuity, such as thickness. Therefore, it is possible to detect defects in a structure by generating standing waves with a single frequency and scanning the waves at each point by with the laser scanning system. The proposed technique is demonstrated on a wall-thinned plate with a linear thickness variation.