DOI QR코드

DOI QR Code

Measuring Plate Thickness Using Spatial Local Wavenumber Filtering

국소 공간 웨이브넘버 필터링 기법을 이용한 평판 구조물 두께 측정

  • 강토 (한국원자력연구원 원자력융합기술개발부) ;
  • 이정한 ((주)액트) ;
  • 한순우 (한국원자력연구원 원자력융합기술개발부) ;
  • 박진호 (한국원자력연구원 원자력융합기술개발부) ;
  • 박규해 (전남대학교 기계공학과) ;
  • 전준영 (전남대학교 기계공학과)
  • Received : 2016.08.02
  • Accepted : 2016.10.20
  • Published : 2016.10.30

Abstract

Corrosion on the surface of a structure can generate cracks or cause walls to thin. This can lead to fracturing, which can eventually lead to fatalities and property loss. In an effort to prevent this, laser imaging technology has been used over the last ten years to detect thin-plate structure, or relatively thin piping. The most common laser imaging was used to develop a new technology for inspecting and imaging a desired area in order to scan various structures for thin-plate structure and thin piping. However, this method builds images by measuring waves reflected from defects, and subsequently has a considerable time delay of a few milliseconds at each scanning point. In addition, the complexity of the system is high, due to additional required components, such as laser-focusing parts. This paper proposes a laser imaging method with an increased scanning speed, based on excitation and the measurement of standing waves in structures. The wavenumber of standing waves changes at sections with a geometrical discontinuity, such as thickness. Therefore, it is possible to detect defects in a structure by generating standing waves with a single frequency and scanning the waves at each point by with the laser scanning system. The proposed technique is demonstrated on a wall-thinned plate with a linear thickness variation.

구조물 표면은 부식으로 인하여, 크랙이나 감육이 발생할 수 있으며, 이로 인하여 구조물의 파단으로 귀결되어 많은 인명 피해와 재산 손실을 초래할 수 있다. 이에 따라, 박판 구조물이나 배관 구조물과 같이 검사 면적에 비해 두께가 얇은 구조물에 대한 레이저 영상화 기법은 최근 10여년간 꾸준히 연구가 진행되었다. 가장 많이 사용되는 방법으로는 펄스 레이저를 이용한 영상화 시스템이다. 이 방법을 이용하여 평판 구조물, 배관 등 다양한 구조물을 스캐닝하여 비교적 짧은 시간에 원하는 영역을 검사하고 영상화하는 기법이 개발되었다. 하지만, 이 기법은 음파가 결함에 의해 반사되는 반사파를 이용하여 영상화하는 기법으로 검사 위치마다 수 ms의 시간지연이 필요하며, 검사 위치마다 레이저 빔을 집속해주는 렌즈가 필요하여 고가의 복잡한 시스템이 필요하다. 본 연구에서는 연속 가진기법을 이용하여 구조물에 정상파(standing wave)를 가진하고, 이 정상파를 위치별로 스캐닝하여 결함을 영상화하는 기술을 제안하였다. 평판 구조물에 두께가 변화하는 결함을 인공적으로 삽입하여, 제안된 기술의 두께 변화 탐지 가능성을 제시하였다.

Keywords

References

  1. J. R. Lee, J. Takatsubo and N. Toyama, "Disbond monitoring at wing stringer tip based on built-in ultrasonic transducers and a pulsed laser," Smart Materials and Structures, Vol. 16, No. 4, pp. 1025-1035 (2007) https://doi.org/10.1088/0964-1726/16/4/010
  2. J. R. Lee, C. C. Chia, C. Y. Park and H. Jeong, "Laser ultrasonic anomalous wave propagation imaging method with adjacent Wave substraction: Algorithm," Optics & Laser Technology, Vol. 44, No. 2, pp. 428-440 (2012) https://doi.org/10.1016/j.optlastec.2011.08.007
  3. J. R. Lee, C. C. Chia, H. J. Shin, C. Y. Park and D. J. Yoon, "Laser ultrasonic propagation imaging method in the frequency domain based on wavelet transform," Optics & Laser Technology, Vol. 49, No. 1, pp. 167-175 (2011) https://doi.org/10.1016/j.optlaseng.2010.07.008
  4. J. R Lee, S. Y. Chong, H. Jeong and C. W. Kong, "A time-of flight mapping method for laser ultrasound guided in a pipe and its application to wall thinning visualization," NDT & E International, Vol. 44, No. 8, pp. 680-691 (2011) https://doi.org/10.1016/j.ndteint.2011.07.005
  5. J. R. Lee, H. J. Jeong, C. C. Ciang, D. J. Yoon and S. S. Lee, "Application of ultrasonic wave propagation imaging method to automatic damage visualization of nuclear power plant pipeline," Nuclear Engineering and Design, Vol. 240, pp. 3513-3520 (2010) https://doi.org/10.1016/j.nucengdes.2010.06.011
  6. J. R. Lee, H. J. Shin, C. C. Chia, D. Dhital and D. J. Yoon, "Long distance laser ultrasonic propagation imaging system for damage visualization," Optics and Lasers in Engineering, Vol. 49, No. 12, pp. 1361-1371 (2011) https://doi.org/10.1016/j.optlaseng.2011.07.011
  7. J. R. Lee, S. Y. Chong, N. Sunuwar and C. Y. Park, "Repeat scanning technology for laser ultrasonic propagation imaging," Measurement Science and Technology, Vol. 24, No. 8, pp. 085201 (2013) https://doi.org/10.1088/0957-0233/24/8/085201
  8. H. M. Jeong, J. R. Lee and C. I. Park, "Advances in hardware of ultrasonic propagation imaging system," Journal of the Korean Society for Nondestructive Testing, Vol. 32, No. 2, pp. 214-219 (2012) https://doi.org/10.7779/JKSNT.2012.32.2.214
  9. E. B Flynn, "Embedded multi-tone ultrasonic excitation and continuous scanning laser vibrometry for rapid and remote imaging of structural defects," 7th European Workshop on Structural Health Monitoring, pp. 1186-1193 (2014)
  10. E. B. Flynn, S. Y. Chong, G. J. Jarmaer and J. R. Lee, "Structural imaging through wavenumber estimation of guided waves," NDT&E International, Vol. 59, pp. 1-10 (2013) https://doi.org/10.1016/j.ndteint.2013.04.003
  11. R. Mikhail, "Selecting industrial laser optics," Industrial Photonics, Vol. 1, (2014)
  12. S. H Kang, H. K Jung and G. Park, "Defect detection through non-contact laser sensing and local wavenumber measurement," Proceedings of KSNT Conference, (2015)