• Title/Summary/Keyword: 배관 감육

Search Result 119, Processing Time 0.026 seconds

감육위치와 굽힘반경의 변화에 따른 감육엘보우의 손상 거동

  • 김태순;박치용;박재학
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.05a
    • /
    • pp.345-353
    • /
    • 2003
  • 탄소강은 가공성과 용접성이 우수하기 때문에 각종 산업설비의 배관재로 많이 사용되고 있으며, 특히 가압중수로형 원전의 1차측 배관과 가압경수로형 원전의 2차측 배관에 주로 사용되고 있다. 그러나 탄소강 배관은 부식에 취약하므로 유동가속부식(FAC, Flow Accelerated Corrosion) 현상에 의한 배관의 두께가 감소하는 감육 손상이 중요하게 대두되고 있는 실정이다. 이러한 감육현상은 다른 어떤 설비보다 안전성의 확보가 강조되고 있는 원전 배관의 경우에 있어서는 특히 중요한 건전성 저해요인으로 인식되고 있다.(중략)

  • PDF

Technology Based on Wall-Thinning Prediction and Numerical Analysis Techniques for Wall-Thinning Analysis of Small-Bore Carbon Steel Piping (감육예측 및 수치해석 기법을 활용한 소구경 탄소강배관 감육영향 분석에 관한 연구)

  • Lee, Dae-Young;Hwang, Kyeong-Mo;Jin, Tae-Eun;Park, Won;Oh, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.429-435
    • /
    • 2010
  • In approximately fifty utilities, including KHNP (Korea Hydro & Nuclear Power), CHECWORKS is used as a tool for predicting and managing the wall thinning of carbon steel piping; this wall thinning is caused by flow-accelerated corrosion (FAC). It is known that CHECWORKS is only applicable to predict the wall thinning of piping with large bores. When dealing with small-bore steel piping, FAC engineers measure the thickness of the susceptible area that is selected on the basis of the experience and judgment of the engineer. This paper proposes the application of CHECWORKS for the management of wall thinning of small-bore piping. Four small-bore pipelines of a domestic nuclear power plant were analyzed from the viewpoints of FAC and fluid dynamics by using CHECWORKS and FLUENT code. Depending on the engineer's skill, CHECWORKS can also be used for the management of wall thinning of small-bore piping.

Application of Laser Ultrasonic Technique for Nondestructive Evaluation of Wall Thinning in Pipe (배관부 감육 손상의 비파괴 평가를 위한 레이저 초음파 기술 적용)

  • Hong, Kyung-Min;Kang, Young-June;Park, Nak-Kyu;Yoon, Suk-Bum
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.4
    • /
    • pp.361-367
    • /
    • 2013
  • Many of the nuclear power plant pipe is used in high temperature and high pressure environment. Wall thinning frequently caused by the corrosion. These wall thinning in pipe is expected gradually increase as nuclear power become superannuated. Therefore there is need to evaluate wall thinning in pipe and corrosion defect by non-destructive method to prevent the accident of the nuclear power facility due to pipe corrosion. Especially for real-time assessment of the wall thinning that occurs in nuclear power plant pipe, the laser ultrasonic technology can be measured even in hard-to-reach areas, beyond the limits of earlier existing contact methods. In this study, the optical method using laser was applied for non-destructive and non-contact evaluation. Ultrasonic signals was acquired through generating ultrasonic by pulse laser and using laser interferometer. First the ultrasonic signal was detected in no wall thinning in pipe, then a longitudinal wave velocity was measured inside of pipe. Artificial wall thinning specimen compared to 20, 30, 40 and 50% of thickness of the pipe was produced and the longitudinal wave velocity was measured. It was possible to evaluate quantitatively the wall thinning area(internal defect depth) cause it was able to calculate the thickness of each specimen using measured longitudinal wave velocity.

Development of a Sensornetwork based Wireless NDT Service Model for High-pressurized Piping Wall Thinning Defect Inspections in a NPP (원전 고압배관 감육검사를 위한 센서네트워크 기반 무선 NDT 서비스 모델 개발)

  • Choi, Yoo-Rark;Lee, Jae-Cheol
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.469-471
    • /
    • 2008
  • 원자력발전소에는 매우 복잡하고 긴 배관 시스템이 작동되고 있다. 이 배관은 매우 높은 온도와 압력에 견디게 설계 및 제작 되었으나, 사용연수의 증가에 따라 배관이 깎이는 감육현상이 발생하며, 이로 인한 배관 파단 사고가 발생하고 있다. 이러한 감육현상은 배관의 곡관부에서 자주 발생하는데, 이를 감시하기 위하여 지금까지는 초음파를 이용한 배관 두께 측정을 해오고 있다. 그러나 이 검사 결과의 신뢰성이 없고, 유선 검사 방식을 채택함으로 인한 장비 설치 문제로 극히 일부 배관의 곡관부에 대한 감시만 수행되고 있는 문제가 있다. 본 논문에서는 펄스 와전류 기법과 일체형 소형 무선 센서를 이용하여 이러한 문제를 해결할 수 있는 방안을 제안한다.

  • PDF

Application Defects Detection in the Small-Bore Pipe Using Infrared Thermography Technique (적외선열화상 카메라를 이용한 원전 소구경 감육배관의 결함 검출)

  • Yun, Kyung-Won;Kim, Dong-Lyul;Jung, Hyun-Chul;Hong, Dong-Pyo;Kim, Kyeong-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.1
    • /
    • pp.34-39
    • /
    • 2013
  • In the advanced research deducted infrared thermography (IRT) test using 4 inch pipe with artificial wall-thinning defect to measure on the wall-thinned nuclear pipe components. This study conducted for defect detection condition of nuclear small-bore pipe research using deducted condition in the advanced research. Defect process is processed by change for defect length, circumferential direction angle, wall-thinning depth. In the used equipment IR camera and two halogen lamps, whose full power capacitany is 1 kW, halogen lamps and Target pipe experiment performed to the distance of the changed 1 m, 1.5 m, 2 m. To analysis of the experimental results ensure for the temperature distribution data, by this data measure for defect length. artificial defect of 4 inch pipe is high reliability in the 2 m, but small-bore pipe is in the 1.5 m from the defect clearly was detected.

Relationship Between Local Wall Thinning and Velocity Components of Deflected Turbulent Flow Inside the Tee Sections of Carbon Steel Piping (탄소강 배관 티에서 편향 난류유동에 따른 속도성분과 국부감육의 상관관계)

  • Kim, Kyung-Hoon;Hwang, Kyeong-Mo;Kang, Deok-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.7
    • /
    • pp.717-722
    • /
    • 2011
  • The aim of this study is to identify the locations at which local wall thinning occurs and to determine the turbulence coefficients related to local wall thinning. Experiments and numerical analyses of the tee sections of different down-scaled piping components were performed and the results were compared. Numerical analyses of full-scale models of actual plants were performed in order to simulate the flow behaviors inside the piping components. In order to determine the relationship between the turbulence coefficients and the rate of local wall thinning, numerical analyses of the tee components in the main feedwater systems were performed. The turbulence coefficients obtained from the numerical analyses were compared with the local wear rate obtained from the measurement data. From the comparison of the results, the vertical flow velocity component (Vr) flowing to the wall after separating in the wall due to the geometrical configuration and colliding with the wall directly at an angle of some degree was analogous to the configuration of local wall thinning.

Wavelet Analysis of Elastic Wave for Wall Thinned High-Pressure Service Pipes (감육을 가지는 고압배관에 대한 탄성파의 Wavelet해석)

  • Kim, Jin-Wook;Ahn, Seok-Hwan;Lee, Si-Yoon;Nam, Ki-Woo;Do, Jae-Yoon
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.3 s.28
    • /
    • pp.1-8
    • /
    • 2005
  • We studied on the nondestructive evaluation of the elastic wave signals of locally wall thinned straight pipe. Wavelet transform was applied for the time-frequency analysis of waveforms obtained by fracture wave detector due to the dropping steel ball. The time-frequency analysis provides time variation of each frequency component involved in a waveform, which makes it possible to evaluate the shape of local wall thinning at each frequency. In this study, comparison by wavelet transform of the AE signals and monotonic bending tests without internal pressure are conducted on 1.91 inch diameter full-scale carbon steel pipe specimens. As the results of tests, fracture behaviors could be shown by the characteristic of mechanical strength of locally wall thinned pipes and the waveforms could be evaluated for the integrity insurance of the piping system according to the length and depth range of the deffeted shape pipes in the real field.

  • PDF

Application Angle of Defects Detection in the Pipe Using Lock-in Infrared Thermography (위상잠금 적외선 열화상 기법을 이용한 각도별 원전 감육 배관의 결함 검출)

  • Yun, Kyung-Won;Go, Gyeong-Uk;Kim, Jin-Weon;Jung, Hyun-Chul;Kim, Kyung-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.4
    • /
    • pp.323-329
    • /
    • 2013
  • This perform research of angle rated defect detection conditions and nuclear power plant piping defect detection by lock-In infrared thermography technique. Defects were processed according to change for wall-thinning length, Circumference orientation angle and wall-thinning depth. In the used equipment IR camera and two halogen lamps, whose full power capacitany is 1 kW, halogen lamps and target pipe's distance fixed 2 m. To analysis of the experimental results ensure for the temperature distribution data, by this data measure for defect length. Reliability of lock-In infrared thermography data is higher than Infrared thermography data. This through research, Shape of angle rated defect is identified industry place. It help various angles defect detection in the nuclear power plant in operation.

Pipe Wall-Thinning Inspection using Vibration Modes of Pipes with Circumferentially Varying Thickness (원주 방향 두께가 불균일한 배관의 진동 모드 특성을 이용한 배관 감육 검사 기법 연구)

  • Han, Soon-Woo;Seo, Jeong-Seok;Park, Jin-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.1
    • /
    • pp.18-26
    • /
    • 2017
  • This work proposes an alternative pipe wall-thinning inspection method based on change of eigenfrequencies of shell vibration modes in wall-thinned pipes. It takes much time to detect wall-thinning of pipes using ultrasonic thickness gauge and only a limited number of pipes are under regular inspection. In a pipe with locally decreased thickness, stiffness varies along circumferential direction and natural frequencies of shell vibration modes of the pipe change or frequencies of same modes bifurcate into two different values. Therefore, one can monitor pipe wall-thinning by measuring change of natural frequencies or estimate wall-thinning shape qualitatively. The feasibility of the proposed method was studied by FE vibration analysis for wall-thinned pipes. Modal testing was also carried out for the pipes with artificial wall-thinned section to verify the working performance of the suggested technique.

Evaluation of Improvement of Detection Capability of Infrared Thermography Tests for Wall-Thinning Defects in Piping Components by Applying Lock-in Mode (적외선열화상 시험에서 위상잠금모드 적용에 따른 배관 감육결함 검출능력 개선 평가)

  • Kim, Jin Weon;Yun, Kyung Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1175-1182
    • /
    • 2013
  • The lock-in mode infrared thermography (IRT) technique has been developed to improve the detection capability of defects in materials with high thermal conductivity, and it has been shown to provide better detection capability than conventional active IRT. Therefore, to investigate the application of this technique to nuclear piping components, lock-in mode IRT tests were conducted on pipe specimens containing simulated wall-thinning defects. Phase images of the wall-thinning defects were obtained from the tests, and they were compared with thermal images obtained from conventional active IRT tests. It showed that the ability to size the detected wall-thinning defects in piping components was improved by using lock-in mode IRT. The improvement was especially apparent when detecting short and narrow defects and defects with slanted edges. However, the detection capability for shallow wall-thinning defects did not improve much when using lock-in mode IRT.