• Title/Summary/Keyword: 배관파손 확률평가

Search Result 17, Processing Time 0.023 seconds

Effect of Ground Subsidence on Reliability of Buried Pipelines (지반침하가 매설배관의 건전성에 미치는 영향)

  • 이억섭;김동혁
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.173-180
    • /
    • 2004
  • This paper presents the effect of varying boundary conditions such as ground subsidence, internal pressure and temperature variation for buried pipelines on failure prediction by using a failure probability model. The first order Taylor series expansion of the limit state function incorporating with von-Mises failure criteria is used in order to estimate the probability of failure mainly associated with three cases of ground subsidence. Using stresses on the buried pipelines, we estimate the probability of pipelines with von-Mises failure criterion. The effects of varying random variables such as pipe diameter, internal pressure, temperature, settlement width, load for unit length of pipelines, material yield stress and pipe thickness on the failure probability of the buried pipelines are systematically studied by using a failure probability model for the pipeline crossing ground subsidence regions which have different soil properties.

Failure Probability Assessment of Gas Pipelines Considering Wall-Thinning Phenomenon (감육현상을 고려한 가스배관의 파손확률 평가)

  • Lee Sang-Min;Yun Kang-Ok;Chang Yoon-Suk;Choi Jae-Boons;Kim Young-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.158-166
    • /
    • 2005
  • Pressurized gas pipeline is subject to harmful effects both of the surrounding environment and of the materials transmitted in them. In order to maintain the integrity, reliable assessment procedures including tincture mechanics analysis etc are required. Up to now, the integrity assessment has been performed using conventional deterministic approaches even though there are many uncertainties to hinder a rational evaluation. In this respect, probabilistic approach is considered as an appropriate method for gas pipeline evaluation. The objectives of this paper are to estimate the failure probability of corroded pipeline in gas and oil plants and to propose limited operating conditions under different types of leadings. To do this, a probabilistic assessment program using reliability index and simulation techniques was developed and applied to evaluate failure probabilities of corroded API-5L-X52/X60 gas pipelines subjected to internal pressure, bending moment and combined loading. The evaluation results showed a promising applicability of the probabilistic integrity assessment program.

Reliability Assessment for Corroded Pipelines by Separable Monte Carlo Method (Separable Monte Carlo 방법을 적용한 부식배관 신뢰도평가)

  • Lee, Jin-Han;Jo, Young-Do;Kim, Lae Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.5
    • /
    • pp.81-86
    • /
    • 2015
  • A deterministic stress-based methodology has traditionally been applied in pipeline design. Meanwhile, reliability based design and assessment (RBDA) methodology has been extensively applied in offshore or nuclear structures. Lately, the release of ISO standard on reliability based limit state methods for pipelines ISO16708 indicates that the RBDA methodology is one of the newest directions of natural gas pipeline design method. This paper presents a case study of the RBDA procedure for predicting the time-dependent failure probability of pipelines with corrosion defects, where separable Monte Carlo (SMC) method is applied in the reliability estimation for corroded pipeline instead of traditional, crude Monte Carlo(CMC) Method. The result shows the SMC method take advantage of improving accuracy in reliability calculation.

Application of Risk-Informed Methods to In-Service Piping Inspection in Framatome Type Nuclear Power Plants (프라마톰형 원전의 배관 가동중검사에 리스크 정보를 활용한 기법 적용)

  • Kim, Jin-Hoi;Lee, Jeong-Seok;Yun, Eun-Sub
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.4
    • /
    • pp.311-317
    • /
    • 2014
  • The Pressurized water reactor owners group (PWROG) developed and applied a risk-informed in-service inspection (RI-ISI) program, as an alternative to the existing ASME Section XI' sampling inspection method. The RI-ISI programs enhance overall safety by focusing inspections of piping at high safety significance (HSS) locations where failure mechanisms are likely to be present. Additionally, the RI-ISI program can reduce nondestructive evaluation (NDE) exams, man-rem exposure for inspectors, and inspection time, among other benefits. The RI-ISI method of in-service piping inspection was applied to 3 units (KSNPs: Korea standard nuclear power plants) and is being deployed to the other units. In this paper, the results of RI-ISI for a Framatome type (France CPI) nuclear power plant are presented. It was concluded that application of RI-ISI to the plant could enhance and maintain plant safety, as well as provide the benefits of greater reliability.

Development of P-PIE Program for Evaluating Failure Probability of Pipes in Nuclear Power Plants (원전 배관의 파손확률평가를 위한 P-PIE 프로그램의 개발)

  • Park, Jai-Hak;Lee, Jae-Bong;Choi, Young-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.1-8
    • /
    • 2010
  • P-PIE program is developed for evaluating failure probability of pipes in nuclear power plants based on the existing PRAISE program. In the program, crack growth due to fatigue loading and stress corrosion can be considered and the probability of fracture or leakage of pipes can be calculated. Crack growth simulation is performed based on stress intensity factor and a damage parameter and failure of a pipe is determined based on J integral or net section yielding. Using the developed program the failure probabilities of tubes in a domestic nuclear power is obtained and discussed.

Risk Ranking Analysis for the City-Gas Pipelines in the Underground Laying Facilities (지하매설물 중 도시가스 지하배관에 대한 위험성 서열화 분석)

  • Ko, Jae-Sun;Kim, Hyo
    • Fire Science and Engineering
    • /
    • v.18 no.1
    • /
    • pp.54-66
    • /
    • 2004
  • In this article, we are to suggest the hazard-assessing method for the underground pipelines, and find out the pipeline-maintenance schemes of high efficiency in cost. Three kinds of methods are applied in order to refer to the approaching methods of listing the hazards for the underground pipelines: the first is RBI(Risk Based Inspection), which firstly assess the effect of the neighboring population, the dimension, thickness of pipe, and working time. It enables us to estimate quantitatively the risk exposure. The second is the scoring system which is based on the environmental factors of the buried pipelines. Last we quantify the frequency of the releases using the present THOMAS' theory. In this work, as a result of assessing the hazard of it using SPC scheme, the hazard score related to how the gas pipelines erodes indicate the numbers from 30 to 70, which means that the assessing criteria define well the relative hazards of actual pipelines. Therefore. even if one pipeline region is relatively low score, it can have the high frequency of leakage due to its longer length. The acceptable limit of the release frequency of pipeline shows 2.50E-2 to 1.00E-l/yr, from which we must take the appropriate actions to have the consequence to be less than the acceptable region. The prediction of total frequency using regression analysis shows the limit operating time of pipeline is the range of 11 to 13 years, which is well consistent with that of the actual pipeline. Concludingly, the hazard-listing scheme suggested in this research will be very effectively applied to maintaining the underground pipelines.

A Reliability Analysis of HHSIS of KNU 5,6,7 and 8 Following the Removal of s-signal from Charging/safety Injection Pump Mini-flow Line Valves (충전/안전주입 펌프 순환배관의 안전주입신호 제거에 따른 원자력 5,6,7,8 호기의 고압안전주입계통의 신뢰도 분석)

  • Chung, Dae-Wook;Chung, Chang-Hyun;Kang, Chang-Soon
    • Nuclear Engineering and Technology
    • /
    • v.20 no.1
    • /
    • pp.47-53
    • /
    • 1988
  • The objective of this study is to evaluate the reliability of the High Head Safety Injection System (HHIS) of KNU 5, 6, 7 and 8 following the removal of safety injection signal (s-signal) from the mini-flow bypass line valves of charging/safety injection pumps. The unavailability of HHSIS and the rupture probability of a charging/safety injection pump have been computed for two different cases; with s-signal on and removed. The results show that when the s-signal is removed from the mini-flow bypass line valves, the unavailability of HHSIS slightly increases while the rupture probability of a charging/safety injection pump is significantly reduced. Hence, based upon the results of this study we conclude that it is more reasonable to remove the s-signal from the mini-flow bypass line valves of KNU 5, 6, 7 and 8 in the normal plant operation. And to improve the availability of HHSIS, the modification of operational procedures and the emphasis on operator training are recommended.

  • PDF