한국신호처리시스템학회 2001년도 하계 학술대회 논문집(KISPS SUMMER CONFERENCE 2001
/
pp.161-164
/
2001
본 논문에서는 배경과 색 정보를 이용하여 얼굴을 추출하는 알고리즘을 제안한다. 영상에서의 얼굴 추출에 관한 방법에는 칼라 영상을 가정한 방법, 농담 영상을 가정한 방법, 얼굴의 회전에 덜 민감한 방법, 복잡한 배경에서의 얼굴 추출 방법 등이 연구되어 있다. 본 논문에서는 배경생성을 통해 물체를 구분하고 칼라 정보(HSI 칼라 모델)를 이용하여 얼굴을 추출한다. 배경생성은 각 픽셀 위치에서의 밝기 값을 장시간 평균하거나 혹은 장시간 누적된 밝기 값들 중 최빈 값을 사용하는데 이 방법은 영상 내 물체의 이동이 정체가 별로 없이 원활한 곳에서는 질 좋은 배경을 생성 할 수 있다. 하지 만 배경의 밝기 값을 누적하는 과정에서 물체의 정지상황이 장시간 반영될 경우 배경 영상의 질이 낮아지는 난점이 있다. 따라서, 배경생성 과정에 하이레벨 정보인 물체의 탐지 결과를 이용하여 움직임이 없는 부분에 대해서만 배경생성에 반영함으로써 좀 더 나은 배경을 생성할 수 있다. 이렇게 생성된 배경을 이용해서 입력 영상과의 배경차이를 하게되면 영상 내에서 배경이 아닌 모든 물체를 추출할 수 있다. 물체를 추출 한 후 얼굴 색깔과 유사한 칼라 영역을 분리하고 추출된 물체의 윗 부분에 얼갈이 위치한다는 가정 하에 일괄을 추출한다.
최근 인공지능을 활용하여 예술 작품에 몰입할 수 있도록 무대 효과를 디자인하는 연구가 진행되고 있다. 무대 효과 중에서 무대 배경은 공연의 분위기를 형성한다. 춤의 장르별로 무대 배경에 사용되는 이미지를 생성하기 위해 소셜 미디어 기반 무대 배경 생성 시스템이 있다. 하지만 같은 장르 춤은 동일한 무대 배경 이미지가 제공되는 문제가 있다. 같은 장르의 춤이지만 노래의 분위기를 반영하여 차별된 무대 배경 이미지를 제공하는 것이 필요하다. 본 논문은 노래 가사의 감정을 활용하여 Generative Adversarial Network(GAN)을 통해 각 노래의 분위기를 고려한 무대 배경 이미지를 생성하는 방법을 제안한다. GAN은 노래에 포함된 단락별 감정 단어를 추출하여 스타일을 생성하도록 학습된다. 학습된 GAN은 노래 가사에 포함된 감정 단어를 활용하여 곡의 분위기를 반영한 무대 배경 이미지를 생성한다. 노래 가사를 고려하여 무대 배경 이미지를 생성함으로써 곡의 분위기가 고려된 무대 배경 이미지 생성이 가능하다.
한국신호처리시스템학회 2001년도 하계 학술대회 논문집(KISPS SUMMER CONFERENCE 2001
/
pp.157-160
/
2001
영상검지기에서 차량 탐지를 위해 사용하는 방법은 배경차이(Background Differencing), 장면차이(Frame Differencing), 공간차이(Spatial Differencing), 밝기값 비교(Gray-Level Comparison) 등이 있다. 이 방법들중에서 배경차이 방법은 기준이 되는 배경영상과 입력영상의 차를 구해 차량을 탐지하는데 대부분의 영상검지기에서 채택 되어 사용되는 방법이다. 배경차이 방법에서 가장 중요한 것은 매번 기준이 되는 배경영상을 정확하게 구하는 것 인데, 영상내 차량의 흐름이 원활하다면 어느 배경생성 방법을 사용해도 좋은 결과를 얻을 수 있지만 차량의 정체 가 심하거나 장기간 지속되면 좋은 배경을 생성하기가 어렵다 특히 교차로의 경우 진행중인 차량 및 신호 대기중 인 차량이 통시에 존재하므로 배경생성에 더욱 어려움을 겪게된다. 이상에서 제시된 세 가지 배경생성 방법을 고속도로와 교차로에서 적용시켜 각 배경영상 생성 방법을 비교 분석한다.
본 논문에서는 교통정보 수집용 영상검지기를 위한 실제 교차로 상황에 잘 맞는 배경영상 생성 방법을 제안한다. 교차로 특성상 진행중인 차량 및 신호 대기중인 차량 등 여러 가지 통행패턴이 있을 수 있는데 차량의 움직임 정보를 추출하기 위해 장면차이 방법을 사용한다. 영상열내 차량의 움직임을 관찰하여 배경영상의 생성 과정에 선택적으로 부분 영역을 반영함으로써 보다 좋은 초기 배경영상을 얻을 수 있다. 기존 방법으로 해결하지 못하는 복잡한 상황하에서의 좋은 초기 배경영상을 생성하므로, 차량으로 탐지되지 않는 영상의 부분영역만을 배경생성 과정에 참여시키는 기존의 배경생성 방법에 이 방법을 사용할 경우, 복잡한 상황에서도 견고하게 차량 탐지를 할 수 있는 배경영상을 생성할 수 있다.
객체를 추적하는 기술은 컴퓨터 비전 분야에서 활발히 연구되고 있는 분야 중 하나이다. 그 중 고정된 단일 카메라를 이용한 객체 추적 기술은 비디오 감시(Surveillance) 등에서 활용되고 있다. 고정된 카메라 환경에서 객체를 추적하는 방법 중 배경 모델링(Background Modeling)을 이용한 방법은 간단하면서도 널리 사용되는 방법 중 하나이다. 객체의 움직임이나 특징을 분석하여 배경 모델을 생성한 후 배경 정보를 이용하여 전경을 분리하면 쉽게 객체를 추출할 수 있다. 그러나 객체의 움직임이 적은 경우 해당 영역에서의 배경 모델은 정확하게 생성될 수 없다. 배경 모델을 학습하는 동안 객체가 충분이 움직이면 이런 문제를 해결할 수 있으나 객체가 움직이기 전까지는 오류가 지속된다. 이런 문제를 해결하기 위해 본 논문에서는 인페인팅(Inpainting)을 이용하여 움직임이 적은 영역을 보정하여 정확한 배경 모델을 생성하는 방법을 제안한다. 배경 모델을 생성한 후 객체로 식별할 수 있는 후보 영역을 식별한다. 선정된 영역들 중 사용자가 객체로 판단되는 영역을 선택하여 해당 영역에 대해 인페인팅으로 화소값 및 가중치들을 보정한다. 보정된 영상으로 배경 모델링을 수행하면 움직임이 적은 영역에 대해서도 효과적으로 배경 모델을 생성 할 수 있다.
비디오 감시 시스템에서 정확한 물체 추적을 위해서는 움직이는 물체가 없는 정적인 배경 영상이 필수적이다. 하지만 기존의 배경 생성 방법들은 주로 시간 축에 따른 화소 정보를 이용하여 오랫동안 정지해 있는 물체들이 존재하는 경우에는 적용하기 어려운 단점이 있다. 이러한 문제점을 해결하기 위해 본 논문에서는 mean-shift와 fast marching method(FMM)을 이용해 시간 축 화소 정보와 공간 축 화소 정보를 이용하여 배경을 생성하는 방법을 제안한다. mean-shift를 이용해 시간 축에 따른 화소 값의 최빈값을 추정하여 배경을 생성하고, FMM을 이용해공간 축에 따른 화소 정보를 이용하여 일정 기간 동안 움직이지 않은 물체가 있는 환경에서 바람직한 배경을 생성한다. 실험 결과는 제안한 방법이 기존의 시간에 따른 빈도만을 이용하는 방법보다 더 효율적임을 보여준다.
본 논문에서는 교통정보 수집용 영상검지기를 위한 새로운 배경생성 방법을 제안한다. 입력되는 영상열의 화소위치별 모든 밝기값을 평균 또는 빈도 계산과정에 참여시키는 기존의 배경생성방법은 차량의 정체가 잦은 경우에 좋지 않은 결과를 보인다. 이러한 단점을 개선하기 위해서 배경생성 과정에 하이레벨 정보인 차량의 탑지결과를 반영하였다. 차량으로 탐지되지 않은 영상부분만을 배경생성 과정에 참여시켰으며 실험을 통해서 새로 제안한 배경생성 방법이 종전 방법에 비해 차량의 정체가 잦은 경우에도 더 견고하게 차량 탐지를 할 수 있는 배경을 생성할 수 있었다.
본 논문에서는 물체탐지를 위한 적응적 배경 생성 기법을 제안한다. 연속적으로 입력되는 영상들의 통계적 평균을 이용하여 배경을 생성하고 배경과 입력영상간의 차영상을 구하여 물체를 탐지한다. 탐지된 물체를 추척하여 일정시간이상 계속 정지해 있는 경우에는 그 물체영역을 배경으로 갱신하고, 이동 물체인 경우에는 배경 갱신에서 배제함으로써 지속적으로 물체를 탐지할 수 있도록 한다. 실험결과는 제안된 방법의 강건함을 보인다.
디지털 미디어의 복사 용이성은 저작권 문제를 일으켰고 이로 인해 기존 음악을 게임 배경음악으로 사용하는데 어려움이 표출 되었다. 게임의 주요 요소 중 하나인 게임 배경음악을 선정하는 것은 중요한 문제이다. 본 연구는 DNA 염기배열에 의한 게임 배경 음악 생성 방법을 제시하여 게임 배경을 쉽게 생성하게 하였다. 현존 하는 DNA는 매우 많은 종류가 있으므로 여기서 얻을 수 있는 게임 배경 음악은 무한하다.
배경과 현재 프레임 영상간의 차영상을 이용하여 이동 물체를 탐지하는 방법은 비디오 감시 시스템에서 가장 보편적인 방법 중 하나이지만 신뢰할 수 있는 배경의 생성은 여전히 쉽지 않은 문제이다. 본 논문에서는 정지 물체를 고려한 적응적 배경 생성 기법을 제안한다. 연속적으로 입력되는 영상들의 산술 평균을 이용하여 초기 배경을 생성한다. 배경과 현재 영상간의 차영상을 구하여 물체를 탐지한 다음, 탐지된 물체가 일정시간이상 계속 정지해 있는 경우에는 그 물체를 정지 물체로 간주하고 정지 물체 영역을 배경으로 갱신한다. 한편, 이동 물체인 경우에는 배경 갱신에서 현재 프레임을 배제함으로써 지속적으로 물체를 탐지할 수 있도록 한다. 제안된 방법은 점진적인 조명의 변화, 느리게 이동하는 물체, 정지 물체 등이 존재하는 동영상에서도 적응적으로 배경을 생성할 수 있으며 이는 실험을 통해 확인되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.