• Title/Summary/Keyword: 배경 모델

Search Result 1,081, Processing Time 0.029 seconds

Robust Contour Extraction of Moving Object based on Hue Gradient Background Model (색상 기울기 배경 모델 기반 안정적 동적 객체 윤곽 추출)

  • Lee, Je-Sung;Moon, Kyu-Hyung;Choi, Yoo-Joo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.11a
    • /
    • pp.261-264
    • /
    • 2006
  • 본 논문은 조명의 변화가 심한 연속영상에서 동적객체를 안정적으로 추출하기 위하여 색상강도 및 기울기 기반 배경모델을 구축하고 이를 이용하여 입력영상으로부터 동적 객체의 윤곽선을 안정적으로 추출하는 기법을 제시한다. 제안기법에서는 우선, 동적객체가 포함되지 않은 배경 연속영상의 HSI 컬러공간에서 색상(Hue) 강도와 색상 기울기에 대한 배경모델을 생성한다. 실시간으로 입력되는 동적 객체를 포함한 연속영상에 대하여 각 화소에 대한 색상(Hue)성분을 추출하고 이웃 화소와의 색상성분에 대한 기울기 크기를 계산한다. 이를 기구축된 배경모델과 비교하여 그 차분값이 일정 임계값을 초과하는 경우 동적객체의 윤곽선으로 판별한다. 제안 기법은 극심한 조명 변화에 강건하게 동적 객체의 윤곽정보를 실시간 추출하였다. 본 논문에서는 기존 RGB 기반 배경 모델링 기법을 적용한 경우와의 비교 실험을 통하여 제안 기법의 안정성을 보였다.

  • PDF

Music and Voice Separation Using Log-Spectral Amplitude Estimator Based on Kernel Spectrogram Models Backfitting (커널 스펙트럼 모델 backfitting 기반의 로그 스펙트럼 진폭 추정을 적용한 배경음과 보컬음 분리)

  • Lee, Jun-Yong;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.227-233
    • /
    • 2015
  • In this paper, we propose music and voice separation using kernel sptectrogram models backfitting based on log-spectral amplitude estimator. The existing method separates sources based on the estimate of a desired objects by training MSE (Mean Square Error) designed Winer filter. We introduce rather clear music and voice signals with application of log-spectral amplitude estimator, instead of adaptation of MSE which has been treated as an existing method. Experimental results reveal that the proposed method shows higher performance than the existing methods.

Local-Spatial Diffused Information based MTBLP Background Model to Model Moving Components in a Fixed Traffic CCTV (교통 CCTV화면 내의 동적 요소 모델링을 위한 분산된 국부 정보기반 MTLBP배경 모델)

  • Noh, Seung-Jong;Jeon, Moon-Gu
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.432-434
    • /
    • 2012
  • 본 논문에서 우리는 고정된 교통 CCTV 카메라 화면 내에 존재하는 배경의 동적 요소틀을 효과적으로 모델링 할 수 있는 새로운 배경 모델을 제안하고자 한다. 우리의 모델은 [1]에서 제안했던 multiple-thresholded local binary patterns(MTLBP)배경 모델을 확장한 것으로, 가우시안 필터를 통해 화면의 분산된 국부정보를 수집함으로써 움직이는 나뭇가지등과 같은 배경의 동적 요소를 제거한다. 우리는 다양한 실험 결과를 통해 제안하는 기법이 저해상도의 영상에 대해서도 매우 빠르고 정확하게 동작할 수 있으며, 따라서 실제의 응용 시스템에 적합함을 보일 것이다.

A Study on the System for the Personalized Background Music Service (개인화된 배경음악 서비스 제공 시스템에 관한 연구)

  • Hwang, Su-Jin;Hwang, Chul-Hyun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.661-663
    • /
    • 2005
  • 배경음악 서비스는 최근 저작권법의 강화, Music Contents 시장의 발전과 함께 많은 화두가 되고 있는 분야이다. 하지만 국내의 배경 음악 관련 현황은 일괄 CD를 구입하고 대형업체만이 소수의 전문가로만 운영하여 관련 법규 대응과 음악 제공 수준이 극히 저조한 상태이다. 이러한 문제를 해결하기 위해 본 논문에서는 배경음악과 관련된 업계의 상황과 선진 사례를 기준으로 개인화된 배경음악 시스템의 표준 구조 운영 모델 및 시스템 구조 모델을 제시 하고자 한다. 표준 운영 구조 모델은 취약한 국내 서비스 환경하에서의 최소한의 운영 요구 사항과 운영목표 달성을 위한 Guideline을 제시하고 함께 시스템 구조 모델을 통해 그 실현 가능성을 살펴보았다.

  • PDF

The Background Modeling Method under Camera Shaking (카메라 흔들림을 고려한 배경 모델 생성 방법)

  • Lee, Jaehoon;Kim, Hyungmin;Park, Jong-Il;Kim, Yookyung;Kim, Kwang-Yong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.11a
    • /
    • pp.72-75
    • /
    • 2016
  • 본 논문에서는 고정된 카메라 환경에서 카메라의 흔들림에 강인한 배경 영상을 생성할 수 있는 배경 모델링 방법을 제안한다. 흔들리지 않은 영상을 기준 영상으로 설정하고 기준 영상에서 해리스 코너 검출기를 이용하여 특징점들을 검출한다. 이후 입력 영상에 대해 동일한 방식으로 특징점을 추출한 뒤 탬플릿 매칭과 거리 비교를 이용하여 공통적으로 나타나는 배경 영역들에 대한 특징점만을 선별한다. 기준 영상에서의 특징점과 목표 영상에서의 대응되는 특징점 쌍을 이용하여 보정을 위한 호모그래피 행렬을 계산한다. 이렇게 계산된 보정 행렬을 이용하여 흔들린 목표 영상을 보정하게 된다. 흔들린 영상들을 보정한 후 보정된 영상들로 배경 모델을 생성하게 되면 정확한 배경 모델을 생성할 수 있다.

  • PDF

Model of Game Environment Design for Adanced Game Background Graphic and Map Design (게임 배경그래픽과 배경맵 설계를 위한 게임 환경디자인 모델 연구)

  • Joo, Jung-Kyu
    • Journal of Korea Game Society
    • /
    • v.4 no.3
    • /
    • pp.77-84
    • /
    • 2004
  • Game environment, game map and background graphic design is very important elements and factors that support fun, look & feel, immersion and player's acting fields. In this paper we defined elements of game background environment. And then make an investigation and refer to sundry records and books, we described elements of periodic environments, historic environments, natural environments, artificial environments, cultural environments, virtual environments, weather environments. Especially, the study suggests the model of game environment desgin to apply game map and game background graphic design.

  • PDF

Codebook-Based Foreground-Background Segmentation with Background Model Updating (배경 모델 갱신을 통한 코드북 기반의 전배경 분할)

  • Jung, Jae-young
    • Journal of Digital Contents Society
    • /
    • v.17 no.5
    • /
    • pp.375-381
    • /
    • 2016
  • Recently, a foreground-background segmentation using codebook model has been researched actively. The codebook is created one for each pixel in the image. The codewords are vector-quantized representative values of same positional training samples from the input image sequences. The training is necessary for a long time in the most of codebook-based algorithms. In this paper, the initial codebook model is generated simply using median operation with several image frames. The initial codebook is updated to adapt the dynamic changes of backgrounds based on the frequencies of codewords that matched to input pixel during the detection process. We implemented the proposed algorithm in the environment of visual c++ with opencv 3.0, and tested to some of the public video sequences from PETS2009. The test sequences contain the various scenarios including quasi-periodic motion images, loitering objects in the local area for a short time, etc. The experimental results show that the proposed algorithm has good performance compared to the GMM algorithm and standard codebook algorithm.

Layered Object Detection using Adaptive Gaussian Mixture Model in the Complex and Dynamic Environment (혼잡한 환경에서 적응적 가우시안 혼합 모델을 이용한 계층적 객체 검출)

  • Lee, Jin-Hyung;Cho, Seong-Won;Kim, Jae-Min;Chung, Sun-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.387-391
    • /
    • 2008
  • For the detection of moving objects, background subtraction methods are widely used. In case the background has variation, we need to update the background in real-time for the reliable detection of foreground objects. Gaussian mixture model (GMM) combined with probabilistic learning is one of the most popular methods for the real-time update of the background. However, it does not work well in the complex and dynamic backgrounds with high traffic regions. In this paper, we propose a new method for modelling and updating more reliably the complex and dynamic backgrounds based on the probabilistic learning and the layered processing.

Generating Contextual Answers Through Latent Weight Attention Calculations based on Latent Variable Modeling (잠재 변수 모델링 기반 잠재 가중치 어텐션 계산을 통한 문맥적 답변 생성 기법)

  • Jong-won Lee;In-whee Joe
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.611-614
    • /
    • 2024
  • 최근 많은 분야에서 인공지능을 사용한 산업이 각광을 받고 있고 그중 챗-GPT 로 인하여 챗봇에 관한 관심도가 높아져 관련 연구가 많이 진행되고 있다. 특히 질문에 대한 답변을 생성해주는 분야에 대한 연구가 많이 이루어지고 있는데, 질문-답변의 데이터 셋에 대한 학습 방식보다는 질문-답변-배경지식으로 이루어진 데이터 셋에 대한 학습 방식이 많이 연구가 되고 있다. 그러다 보니 배경지식을 어떤 방식으로 모델에게 이해를 해줄 지가 모델 성능에 큰 부분 차지한다. 그리고 최근 연구에 따르면 이러한 배경지식 정보를 이해시키기 위해 잠재 변수 모델링 기법을 활용하는 것이 높은 성능을 갖는다고 하고 트랜스포머 기반 모델 중 생성 문제에서 강점을 보이는 BART(Bidirectional Auto-Regressive Transformer)[1]도 주로 활용된다고 한다. 본 논문에서는 BART 모델에 잠재 변수 모델링 기법 중 잠재 변수를 어텐션에 곱하는 방식을 이용한 모델을 통해 답변 생성 문제에 관한 해결법을 제시하고 그에 대한 결과로 배경지식 정보를 담은 답변을 보인다. 생성된 답변에 대한 평가는 기존에 사용되는 BLEU 방식과 배경지식을 고려한 방식의 BLEU 로 평가한다.

Moving Object Detection in Pan-Tilt Camera using Image Alignment (영상 정렬 알고리듬을 이용한 팬틸트 카메라에서 움직이는 물체 탐지 기법)

  • Baek, Young-Min;Choi, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.260-261
    • /
    • 2008
  • 이동 물체 탐지(Object Detection) 기법은 대부분의 감시 시스템에서 가장 초기 단계로서, 이후에 물체 추적(Object Tracking) 및 물체 식별(Object Classification) 등의 지능 알고리듬에 입력으로 사용된다. 따라서 물체의 윤곽의 변화 없이 최대한 정교하게 이동 물체 영역 맵을 생성하는 것이 물체 탐지의 가장 중요한 요소가 된다. 카메라가 고정되어 있는 경우에는 현재 들어오는 영상에 대한 확률적 배경 모델을 생성할 수 있지만, 팬틸트 카메라와 같이 영상의 좌표가 변하는 환경에서는 배경 모델도 계속 변하기 때문에 기존의 배경 모델을 그대로 사용할 수 없다. 본 논문에서는 팬틸트 카메라와 같이 동적인 카메라에서 이동 물체 탐지를 위해, 국소 특징점(Local Feature)를 통해 카메라의 움직임을 판단하여 연속되는 영상간의 변환 행렬(Transformation Matrix)를 구하고 하고, 확률적 배경 모델링을 통한 이동 물체 탐지 기법을 제안한다. 자제 촬영한 이동 카메라 실험영상을 통해서 이 알고리듬이 동적 배경에서도 매우 강인하게 동작하는 것을 검증하였다.

  • PDF