Journal of the Korean Data and Information Science Society
/
v.20
no.6
/
pp.991-998
/
2009
This paper deals with directivity forecasting of time series which is useful for futures trading in stock market. Directivity forecasting of time series is to forecast whether a given time series will rise or fall at next observation time point. For directional forecasting, we consider time regression model and ARIMA model. In particular, we study two statistics, intra-model and extra-model deviation and then show usefulness of intra-model deviation.
Park, Si-Jeo;Park, Cheong-Sool;Kim, Sung-Shick;Baek, Jun-Geol
Journal of the Korea Society for Simulation
/
v.20
no.4
/
pp.67-79
/
2011
The statistical process control (SPC) assumes that observations follow the particular statistical distribution and they are independent to each other. However, the time-series data do not always follow the particular distribution, and most of cases are autocorrelated, therefore, it has limit to adopt the general SPC in tim series process. In this study, we propose a MPBC (Model Parameter Based Control-chart) method for fault detection in time-series processes. The MPBC builds up the process as a time-series model, and it can determine the faults by detecting changes parameters in the model. The process we analyze in the study assumes that the data follow the ARMA (p,q) model. The MPBC estimates model parameters using RLS (Recursive Least Square), and $K^2$-control chart is used for detecting out-of control process. The results of simulations support the idea that our proposed method performs better in time-series process.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2000.11a
/
pp.444-447
/
2000
본 논문에서는 종래의 정적인 디지털 패턴 매칭을 행하는 연상메모리와는 달리 아놀로그의 시계열정보를 직접 처리하여 시간축 방향으로 설정하는 것으로 강인성이 뛰어난 연상기억시스템을 제안하였다. 시스템의 기본적인 능력을 조사하기 위하여 기억패턴을 주기계열로 그리고 하중은 전부 고정하는 조건으로 단순화하여 시뮬레이션을 행하여 오류 정정능력을 갖는 것을 확인하였다. 시간축 방향의 하중을 적절하게 설정하면 기억용량의 증대나 상기 오류의 저감 등의 효과가 기대된다.
Journal of the Korea Society of Computer and Information
/
v.14
no.5
/
pp.19-28
/
2009
Prediction problem of the time-series data has been a research issue for a long time among many researchers and a number of methods have been proposed in the literatures. In this paper, a method is proposed that similarities among time-series data are examined by use of Hidden Markov Model and Likelihood and future direction of the data movement is determined. Query sequence is modeled by Hidden Markov Modeling and then the model is examined over the pre-recorded time-series to find the subsequence which has the greatest similarity between the model and the extracted subsequence. The similarity is evaluated by likelihood. When the best subsequence is chosen, the next portion of the subsequence is used to predict the next phase of the data movement. A number of experiments with different parameters have been conducted to confirm the validity of the method. We used KOSPI to verify suggested method.
Spatial data is collected on a regular Cartesian lattice. In this paper we consider the model indentification of spatial autoregressive(SAR) models using AIC, BIC, pattern method. The proposed methods are considered as an application of AIC, BIC, 3-patterns for SAR models through three directions; row, column and diagonal directions. Using the Monte Carlo simulation, we test the efficiency of the proposed methods for various SAR models.
A new time series method, directional ARMAX (dARMAX) model-based approach. is proposed for rotor dynamics identification. The dARMAX processes complex-valued signals, utilizing the complex modal testing theory which enables the separation of the backward and forward modes in the two-sided frequency domain and makes effective modal parameter identification possible, to account for the dynamic characteristics inherent in rotating machinery. This paper is divided into two parts : The dARMAX modeling, analysis. and fitting strategy are presented in the first part. whereas a evaluation of its performance characteristics based on both simulated and experimental data is presented in the second.
증권가격의 시계열을 그래프로 표시하면 이 시계열의 운동양태가 파악될 수도 있다. 그래프를 통하여 추세가 존재하고 있는지 아니면 존재하지 않는지를 파악할 수 있을 것이다. 그리고 이 그래프를 통하여 증권가격 시계열이 정상적과정에 의하여 생성되는지의 여부가 인식될 수도 있을 것이며, (조건부) 이분산이 존재하고 있는지 또는 (조건부) 동분산이 존재하고 있는지도 인식될 수 있을 것이다. 간단한 기술통계량을 통하여 증권시계열의 성질을 파악할수도 있다. 이 시계열이 선형과정에 의하여 생성되는지 아니면 비선형과정에 의하여 생성되는지도 인식할 수 있을 것이다. 뿐만아니라 비선형과정중 하나인 카오스 과정에 의하여 증권가격이 생성되는지의 여부도 파악할 수 있을 것이다. 증권가격의 실현된 표본경로와 시뮬레이션을 통하여 얻은 표본경로가 일치하는지 또는 불일치하는지에 대한 판별을 통하여 모형정립에서 특히 많이 사용되고 있는 확률과정들이 생성시키는 증권가격 시계열이 실제로 관찰된 가격 시계열과 일치하여 현실적합성을 가지고 있는지의 여부도 판단할 수 있을 것이다. 주가시계열 그 자체를 출발점으로 하여 이 시계열의 움직임과 행동양식을 파악해가면 수많은 연구를 통하여 축적된 이론들과 주가를 형성시키는 성질들이 현실적으로 성립하고 있는지도 밝힐 수 있고 개발된 이론들의 장점과 단점을 강도높게 밝힐 수 있는 계기도 갖게 될 것이다. 데이터를 있는 그대로 면밀하게 검토하면 이미 공개된 문제점(open question)도 확인할 수 있을 것이고 아직 알려지지 않은 문제점들과 질문들을 찾게 될 수도 있을 것이다. 이것들은 앞으로의 연구를 위한 중요한 발견이 될 수 있을 것이다. 이 논문에서는 문제와 질문의 발견에 초점을 둔다. 이 논문에서는 한국의 주식시장과 미국의 주식시장을 대비하여 다룬다. 우리가 그동안의 연구를 통하여 미국의 문헌과 미국의 시장에 대한 지식을 상당히 축적하고 있는 만큼 이 대비를 통하여 두 시장이 동일하게 가지고 있는 행동양태와 서로 상이하게 가지고 있는 점들을 파악하면 두 시장에 대한 이해의 폭도 넓어질 것이며 동시에 미국의 연구결과를 수용하는 큰 방향을 결정하는데에도 일조가 되리라고 생각된다.
We live in a myriad of data. Various data are created in all situations in which we work, and we discover the meaning of data through big data technology. Many efforts are underway to find meaningful data. This paper introduces an analysis technique that enables humans to make better choices through the trend and prediction of time series data as a principal component analysis technique. Principal component analysis constructs covariance through the input data and presents eigenvectors and eigenvalues that can infer the direction of the data. The proposed method computes a reference axis in a time series data set having a similar directionality. It predicts the directionality of data in the next section through the angle between the directionality of each time series data constituting the data set and the reference axis. In this paper, we compare and verify the accuracy of the proposed algorithm with LSTM (Long Short-Term Memory) through cryptocurrency trends. As a result of comparative verification, the proposed method recorded relatively few transactions and high returns(112%) compared to LSTM in data with high volatility. It can mean that the signal was analyzed and predicted relatively accurately, and it is expected that better results can be derived through a more accurate threshold setting.
Proceedings of the Korea Multimedia Society Conference
/
2003.11a
/
pp.371-374
/
2003
서브시퀀스 매칭은 주어진 질의 시퀀스와 변화의 추세가 유사한 서브시퀀스들을 시계열 데이터베이스로부터 검색하는 연산이다. 본 논문에서는 기존에 제안된 서브시퀀스 매칭 기법인 FRM과 Dual-Match를 대상으로 다양한 실험을 통하여 윈도우 크기 효과를 정량적으로 분석한다. 또한, 이러한 분석 결과를 기반으로 서브시퀀스 매칭 처리의 성능 개선을 위한 향후의 연구 방향을 제시한다.
Proceedings of the Korea Water Resources Association Conference
/
2008.05a
/
pp.593-597
/
2008
유역에서의 강우사상에 따른 일련의 수문학적 과정의 규명과 수자원의 효율적 관리를 위한 토양함수량을 산정하는데 토양수분의 시공간적 분포특성을 파악하는 것은 매우 중요하다. 연구유역은 경기도 파주시 적성면 설마리의 설마천 유역 내에 위치한 소유역이다. 대상유역의 정밀측량을 하여 수치고도모형(DEM)을 획득 하였다. 이 수치고도모형에 사용하여 수치지형분석을 통해 총 21지점을 선정하였다. 토양수분의 연직방향 변화를 알아보기 위해 각 지점의 10, 30, 60cm 깊이에 센서를 설치하여 토양수분을 측정하는 TDR (Time Domain Reflectometry)방식인 MiniTRASE를 이용하여 총 50채널을 통해 매 2시간 간격으로 토양수분의 변동을 관측하였다. 토양수분의 시공간적 분포특성을 분석하기 위해 획득된 자료를 바탕으로 시계열의 공간 분석 및 통계분석을 수행하였다. 토양수분 시계열에 대한 공간분석은 토양수분의 사면에서의 공간적인 분포가 사면의 지형적인 형상에 의해서 영향을 받는다는 것을 보여주고 있다. 그리고 통계분석을 통해 평균치의 표준편차가 대상 기간 동안 일정한 것으로 나타났고, 이는 대상사면에서의 토양수분 분포 특성이 기후나 식생의 변동성에 영향을 받지 않고, 지형이나 토질 같은 정적인 인자에 주로 영향을 받는다는 가설을 뒷받침한다. 이 결과는 토양수분의 시공간적 분포양상의 파악과 국내 사면에서의 수문기작들을 규명하는데 기여를 할 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.