• Title/Summary/Keyword: 방전면적

Search Result 92, Processing Time 0.018 seconds

A Study on Adsorption Characteristics of Benzene over Activated Carbons Coated with Insulating Materials and Desorption by Microwave Irradiation (절연물질이 코팅된 활성탄의 벤젠 흡착특성 및 마이크로파에 의한 탈착에 관한 연구)

  • Kim, Ki-Joong;Ahn, Ho-Geun
    • Applied Chemistry for Engineering
    • /
    • v.19 no.4
    • /
    • pp.445-451
    • /
    • 2008
  • In order to regenerate the activated carbon polluted by volatile organic compounds (VOCs) using microwave, adsorption and desorption characteristics of benzene over activated carbon (AC) coated with insulating materials were investigated. Physical characteristics of activated carbon and insulator-coated ACs were investigated by means of $N_2$ gas adsorption and scanning electron microscopy (SEM). The amount of VOC adsorbed showed a positive relationship with the specific surface area of the ACs, and spark discharge over insulator-coated ACs did not occur. Potassium silicate (PS) was the best binder for coating of insulating materials on AC. Amount of benzene desorbed by microwave irradiation was dependent on output power of microwave. Nearly same performance was obtained even though the adsorption-desorption operation under microwave irradiation was repeated 5 times. Finally, it was known that the microwave heating was a very effective mean for regenerating the polluted AC.

A Loop Filter Size and Spur Reduced PLL with Two-Input Voltage Controlled Oscillator (두 개의 입력을 가진 VCO를 이용하여 루프필터와 스퍼 크기를 줄인 위상고정루프)

  • Choi, Young-Shig;Moon, Dae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.8
    • /
    • pp.1068-1075
    • /
    • 2018
  • In this paper, a novel PLL has been proposed that reduces the size of the loop filter while suppressing spur by using a VCO with two inputs. Through the stability analysis according to the operating status, the PLL is designed to operate stably after the phase fixing. The capacitor of loop filter usually occupies larger area of PLL. It is a VCO that can reduce the size of the loop filter by increasing the effective capacitance of the capacitor through the simultaneous charge and discharge operation by two charge pumps and has two signals operating in opposite phases. The settling time of set to $80{\mu}s$ approximately by using a LSI(Locking Status Indicator) indicating the phase locking status. The proposed PLL is designed using a supply voltage of 1.8V and a $0.18{\mu}m$ CMOS process.

V-t Characteristics and 50% Flash-over Voltage of $SF_{6}-N_{2}$ Mixtures for Lightening Impulse Voltage ($SF_{6}-N_{2}$ 혼합가스에서 뇌충격전압에 의한 50[50%] Flash over 전압 및 V-t 특성)

  • 김정달;송원표;김동의
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.7 no.1
    • /
    • pp.21-29
    • /
    • 1993
  • In this paper, we studied the 50% flashover voltage of lightening impulse which affect the most serious damages on the insulation of the electric power network system. Also its V -t characteristics and corona process phenomena of pure $SF_6, N_2, SF_6-N_2$mixtures under the circumstances of nonuniform field gap are researched. Comparing the characteristics of pure $SF_6$ with that of $SF_6, N_2$mixtures, we discussed that breakdown processes and $SF_6, N_2$ mixture's application to economics.As a results, 50% flashover voltage of $SF_6$ 50% - $N_2$ 50% for impulse voltage is higher then that of 80% of pure SF6, measured data and calculated data by equal area law are almost equal from the points of view of V-t characteristics. Therefore, it has been known that $SF_6$ 50% - $N_2$ 50% mixtures can be used as an economic constitution gas of pure $SF_6$, it is verified that corona processes from Lichtenberg figure.

  • PDF

A Study on SCR-based ESD Protection Circuit with High Holding Voltage and All-Direction Characteristics (높은 Holding Voltage 및 All-Direction 특성을 갖는 SCR 기반의 ESD 보호회로에 관한 연구)

  • Jin, Seung-Hoo;Do, Kyoung-Il;Woo, Je-Wook;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1156-1161
    • /
    • 2020
  • In this paper, we propose a new ESD protection circuit with improved electrical characteristics through structural changes of the existing one-way SCR. The proposed ESD protection circuit has high holding voltage characteristics due to the inserted N+ floating and P+ floating regions, and thus the latch-up immunity characteristics are improved. In addition, structural change enables ESD discharge in four types of Zapping mode (PD, PS, ND, NS), and has superior area efficiency than unidirectional SCR. In addition, the P+ floating and N+ floating lengths corresponding to the base length of the parasitic bipolar transistor, and the distance between P+ floating and N+ floating were designated as design variables, and the high holding voltage was verified through Synopsys' TCAD Simulator.

Development of Thermoplastic Carbon Composite Hybrid Bipolar Plate for Vanadium Redox Flow Batteries (VRFB) (바나듐 레독스 흐름전지용 열가소성 탄소 복합재료 하이브리드 분리판 개발)

  • Jun Woo Lim
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.422-428
    • /
    • 2023
  • The electrical contact resistance between the bipolar plate (BP) and the carbon felt electrode (CFE), which are in contact by the stack clamping pressure, has a great impact on the stack efficiency because of the relatively low clamping pressure of the vanadium redox flow battery (VRFB) stack. In this study, a polyethylene (PE) composite-CFE hybrid bipolar plate structure is developed through a local heat welding process to reduce such contact resistance and improve cell performance. The PE matrix of the carbon fiber composite BP is locally melted to create a direct contact structure between the carbon fibers of CFE and the carbon fibers of BP, thereby reducing the electrical contact resistance. Area specific resistance (ASR) and gas permeability are measured to evaluate the performance of the PE composite-CFE hybrid bipolar plate. In addition, an acid aging test is performed to measure stack reliability. Finally, a VFRB unit cell charge/discharge test is performed to compare and analyze the performance of the developed PE composite-CFE hybrid BP and the conventional BP.

Electrochemical Characteristics of Ultra Battery Anode Material using the Nano Pb/AC for ISG (나노 납/활성탄을 사용한 ISG용 울트라 전지 음극소재의 전기화학적 특성)

  • Hwang, Jin Ung;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.593-599
    • /
    • 2017
  • In order to enhance ultra battery performances, the electrochemical characteristics of nano Pb/AC anode composite was investigated. Through nano Pb adsorption onto activated carbon, nano Pb/AC was synthesized and it was washed under vacuum process. The prepared anode materials was analysed by SEM, BET and EDS. The specific surface area and average pore size of nano Pb/AC composite were $1740m^2/g$ and 1.95 nm, respectively. The negative electrode of ultra battery was prepared by nano Pb/AC dip coating on lead plate. The electrochemical performances of ultra battery were studied using $PbO_2$ (the positive electrode) and prepared nano Pb/AC composite (the negative electrode) pair. Also the electrochemical behaviors of ultra battery were investigated by charge/discharge, cyclic voltammetry, impedance and rate capability tests in 5 M $H_2SO_4$ electrolyte. The initial capacity and cycling performance of the present nano Pb/AC ultra battery were improved with respect to the lead battery and the AC-coated lead battery. These experimental results indicate that the proper addition of nano Pb/AC into the negative electrode can improve the discharge capacity and the long term cycle stability and remarkably suppress the hydrogen evolution reaction on the negative electrode.

Synthesis and Electrochemical Characteristics of Mesoporous Silicon/Carbon/CNF Composite Anode (메조기공 Silicon/Carbon/CNF 음극소재 제조 및 전기화학적 특성)

  • Park, Ji Yong;Jung, Min Zy;Lee, Jong Dae
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.543-548
    • /
    • 2015
  • Si/C/CNF composites as anode materials for lithium-ion batteries were examined to improve the capacity and cycle performance. Si/C/CNF composites were prepared by the fabrication process including the synthesis and magnesiothermic reduction of SBA-15 to obtain Si/MgO by ball milling and the carbonization of phenol resin with CNF and HCl etching. Prepared Si/C/CNF composites were then analysed by BET, XRD, FE-SEM and TGA. Among SBA-15 samples synthesized at reaction temperatures between 50 and $70^{\circ}C$, the SBA-15 at $60^{\circ}C$ showed the largest specific surface area. Also the electrochemical performances of Si/C/CNF composites as an anode electrode were investigated by constant current charge/discharge test, cyclic voltammetry and impedance tests in the electrolyte of LiPF6 dissolved in mixed organic solvents (EC : DMC : EMC = 1 : 1 : 1 vol%). The coin cell using Si/C/CNF composites (Si : CNF = 97 : 3 in weight) showed better capacity (1,947 mAh/g) than that of other composition coin cells. The capacity retention ratio decreased from 84% (Si : CNF = 97 : 3 in weight) to 77% (Si : CNF = 89 : 11 in weight). It was found that the Si/C/CNF composite electrode shows an improved cycling performance and electric conductivity.

Investigation on CO Adsorption and Catalytic Oxidation of Commercial Impregnated Activated Carbons (상용 첨착활성탄의 일산화탄소 흡착성능 및 촉매산화반응 연구)

  • Ko, Sangwon;Kim, Dae Han;Kim, Young Dok;Park, Duckshin;Jeong, Wootae;Lee, Duck Hee;Lee, Jae-Young;Kwon, Soon-Bark
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.513-517
    • /
    • 2013
  • We investigated the properties of impregnated activated carbons, a commercial adsorbent for the individual protection equipment, and examined CO adsorption and oxidation to $CO_2$. The surface area, pore volume and pore size were measured for four commercial samples using Brunauer-Emmett-Teller/Barrett-Joyner-Halenda (BET/BJH), and atomic compositions of the sample surface were analyzed based on SEM/EDS and XPS. Impregnated activated carbons containing Mn and Cu for fire showed the catalytic CO oxidation to $CO_2$ with a high catalytic activity (up to 99% $CO_2$ yield), followed by the CO adsorption at an initial reaction time. On the other hand, C: for chemical biologial and radiological (CBR) samples, not including Mn, showed a lower CO conversion to $CO_2$ (up to 60% yield) compared to that of fire samples. It was also found that a heat-treated activated carbon has a higher removal capacity both for CO and $CO_2$ at room temperature than that of untreated carbon, which was probably due to the impurity removal in pores resulted in a detection-delay about 30 min.

Effect of Annealing Temperature on the Anode Properties of TiO2 Nanotubes for Rechargeable Lithium Batteries (열처리 온도에 따른 TiO2 나노튜브의 리튬이차전지 음전극 특성)

  • Choi, Min Gyu;Kang, Kun Young;Lee, Young-Gi;Kim, Kwang Man
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.25-29
    • /
    • 2012
  • $TiO_2$ nanotubes are prepared from rutile prticles via an alkaline hydrothermal synthesis and the consequent heat treatment at $300{\sim}500^{\circ}C$. The physical and electrochemical properties of the $TiO_2$ nanotubes are characterized for use as a anode material of rechargeable lithium battery. In particular, the microscale dusts as an impurity component occurred in the purification step after the hydrothermal reaction are completely removed to yield $TiO_2$ nanotube with a higher specific surface area and more obvious crystalline phases. As the annealing temperature increases, the specific surface area is slightly decreased due to some aggregation between the isotropically dispersed nanotubes. Highest initial discharge capacity of 250 mAh $g^{-1}$ is achieved for the $TiO_2$ nanotube annealed at $300^{\circ}C$, whereas the $400^{\circ}C$ $TiO_2$ nanotube shows the superior cycle performance and high-rate capability.

Characterization of Cold Hollow Cathode Ion Source by Modification of Electrode Structure (전극 구조 변화에 따른 Cold Hollow Cathode Ion Source의 특성 변화)

  • Seok, Jin-Woo;Chernysh, V.S.;Han, Sung;Beag, Young-Hwoan;Koh, Seok-Keun;Yoon, Ki-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.10
    • /
    • pp.967-972
    • /
    • 2003
  • The inner-diameter 5 cm cold hollow cathode ion source was designed for the high current density and the homogeneous beam profile of ion beam. The ion source consisted of a cylindrical cathode, a generation part of magnetic field, a plasma chamber, convex type ion optic system with two grid electrode, and DC power supply system. The cold hollow cathode ion sources were classified into standard type (I), electron output electrode modified type (II). The operation of the ion source was done with discharge current, ion beam potential and argon gas flow rate. The modification of electron output electrode resulted in uniform plasma generation and uniform area of ion beam was extended from 5 cm to 20 cm. Improved ion source was evaluated with beam uniformity, ion current, team extraction efficiency, and ionization efficiency.