• Title/Summary/Keyword: 방열설계:

Search Result 244, Processing Time 0.047 seconds

Simulation of thermal design and thermoelectric cooling for 3D Multi-chip packaging (3D Multi-chip packaging 을 위한 열 설계 및 열전 냉각 성능 시뮬레이션)

  • Jang, B.;Hyun, S.;Kim, J.H.;Lee, H.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.711-712
    • /
    • 2009
  • MCP 기술을 이용한 반도체 칩에서 문제가 되는 방열문제를 해결하기 위한 방법으로 열전 냉각 소자를 이용하여 열을 방출 시키는 방법에 관하여 연구를 수행하였다. 시뮬레이션을 통하여 열전 소자가 작동할 때, 흡수하는 열량을 계산할 수 있었으며, 열전 소자의 냉각 성능도 평가 할 수 있었다. 이러한 열 해석 및 열전 해석을 통하여 적층 구조의 MCP 모듈을 위한 열 설계 및 효율적 냉각을 가능하게 할 수 있을 것이다.

  • PDF

Design and implementation of thermoelectric dehumidifier using pottier module (Pottier소자를 이용한 열전 제습기 설계 및 구현)

  • 장재철;양규식
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.3
    • /
    • pp.671-679
    • /
    • 1999
  • In this paper, humidity measurement is accomplished using humidity sensor, dehumidify is implemented using general-purpose $\mu$-processorPIC16C54 and thermoelectric module for control measured humidity and input target humidity value proportionally Pottier module product is variety kind of size and characteristic, very important drawing factor is selection necessary heat sink, which is maintain proper thermal resistance from variety kind of module also. From electronic dehumidifier is manufacture by using thermoelectric module, no sound, no vibration, low power consumption of partial space efficient dehumidify proves the validity of this system.

  • PDF

공통모드 노이즈 저감을 위한 전력전자모듈

  • Sin, Jong-Won
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.336-337
    • /
    • 2018
  • 전력 전자 시스템 내의 전도성 노이즈는 반도체 스위칭 소자의 고속 동작에 큰 영향을 받는다. 특히 실리콘 카바이드 (SiC) 등의 신소재 반도체 소자 (wide band-gap device, WBG device) 특유의 고속 dv/dt 특성이 전력전자모듈 (power electronics module, PEM) 내의 기생 용량 (parasitic capacitance)에 인가될 경우 상당한 전도성 노이즈의 원인이 되므로 이를 해결할 필요가 있다. 본 논문에서는 유전율이 낮은 재료를 PEM 내부에 사용함으로써 기생 용량을 줄이고, 따라서 공통 모드 전류의 발생 또한 최소화할 수 있는 설계를 제안한다. 제안된 PEM 설계 기법은 외부 필터를 필요로 하지 않으며, PEM 내의 스위칭 소자-방열 소자간 열저항 (thermal resistance)를 증가시키지 않으면서도 기생 용량을 최소화하여 노이즈를 억제한다. 제안된 방법으로 제작된 PEM을 1 kW 출력 100 kHz 스위칭 주파수의 강압형 dc-dc 컨버터에 적용하여 공통모드 전도성 전류가 줄어듬을 증명하였다.

  • PDF

Daylight color temperature to match 60W LED lighting system development for the interior general Lighting (주광의 색온도와 일치하는 실내 전반 조명용 60W LED 조명제품 개발)

  • Kim, Jin-Hong;Lim, Su-Keun;Park, Joung-Wook;Kim, Gi-Hoon;Song, Sang-Bin
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.197-200
    • /
    • 2009
  • 주광의 색온도와 일치하는 실내 전반 조명용 60W급 LED 조명제품 개발하기 위하여 실내 주광에 적합한 LED를 선정하고, 색온도, 광색제어를 위한 구동회로 및 제어회로를 설계 제작 하였다. 그리고 1W급 Cool White, Warm White Package LED 총 168 EA를 적용하여 주광의 색온도와 일치하는 실내전반 조명용 LED 조명 System 을 개발하였다. 주광의 색온도와 일치하는 실내 전반용 LED 조명제품은 60W급 LED SMPS 구동회로 및 광색/색온도 제어회로 설계, 면발광을 위한 방열 설계 및 기구 구조 설계를 통하여 개발되었으며, 직접 시제품을 제작하고 그 성능을 측정하였다. 그 결과 회로 효율은 85% 이상, 색온도는 $3,000{\sim}7,000K$에서 실시간으로 제어 가능 하고, 원하는 색온도을 구현 할 수 있도록 하였으며, 발산각 또한 최대 광도의 1/2 기준으로 $100^{\circ}$ 이상을 만족시켰다.

  • PDF

Thermal Design on the Backplane of GPS Antenna of Low Earth Orbit Satellite (지구저궤도위성 GPS 안테나 후판 열설계)

  • Hyun, Bum-Seok;Lee, Jang-Joon
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.136-140
    • /
    • 2011
  • In this study, thermal model for backplane of GPS antenna in Low Earth Orbit Satellite is updated and orbit thermal analysis is performed. The analysis is focused on the safehold mode of satellite. During the safehold mode, the solar panel is constantly looking to the Sun, and there is not a mission maneuvering. Therefore, antenna backplane receives the maximum heat influx considering the End-Of-Life condition. To maintain the temperature of antenna within allowable limits, radiating tape is applied and its area is determined. Besides, to verify the lowest temperature of the antenna, cold case with Begin-Of-Life analysis is also performed.

Optimal Design of Graphite Sheet based Cryogenic Cooler Thermal Control System using Veritrek Software (Veritrek 소프트웨어를 활용한 그라파이트시트 기반 극저온 냉각기 열 제어 시스템 최적설계)

  • Bong-Geon Chae;Hye-In Kim;Hyun-Ung Oh
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.2
    • /
    • pp.71-78
    • /
    • 2024
  • During the initial thermal design process, determining the thermal effect of various design variables in a complex orbital thermal environment is time-consuming. To save time in the initial design phase, it is necessary to quickly derive optimal design parameters and predict the temperature. To address these challenges, Veritrek, a software specialized in optimal design using a reduced-order model (ROM), was released in 2018. In this paper, we utilized the Veritrek software to build a reduced-order model, conduct sensitivity analysis, and perform optimal design analysis for a graphite sheet-based cryogenic cooler thermal control system. The goal was to determine the optimal design values for the number of graphite sheet layers, radiator area, and thickness that would meet the allowable temperature of the cryogenic cooler.

Study on Cooling System Characteristics of 400W Active Speaker (400W급 액티브 스피커의 냉각시스템 특성에 관한 연구)

  • Seo, Jae-Hyeong;Bang, You-Ma;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8140-8146
    • /
    • 2015
  • The objective of this study is to experimentally investigate the cooling performance characteristics with the consideration of the temperature variations of the enclosure of the 400W ferrofluid active speaker having both woofer and amplifier heat sinks. In order to do this, the heat sinks for both woofer and amplifier was designed ant applied to 400W ferrofluid active speaker. As a result, the cooling performance of the developed 400W ferrofluid active speaker was improved and the temperature of the enclosure after 120 min at steady state increased by $2.8^{\circ}C$ with the increase of the outdoor temperatures from $25^{\circ}C$ to $29^{\circ}C$. In addition, the overall sound pressure level of the developed 400W ferrofluid active speaker showed 111.8 dB and improved 1.9 dB higher than 109.9 dB of the existed speaker.

A study on the design and cooling of the heat sink with hybrid structure of conductive polymer composite and metal (열전도성 고분자 복합소재/금속 소재 하이브리드 구조의 방열기구 설계 및 방열특성에 관한 연구)

  • Yoo, Yeong-Eun;Kim, Duck Jong;Yoon, Jae Sung;Park, Si-Hwan
    • Design & Manufacturing
    • /
    • v.10 no.3
    • /
    • pp.14-19
    • /
    • 2016
  • Thermally or electrically conductive filler reinforced polymer composites are extensively being developed as the demand for light weight material increases rapidly in industiral applications need good conductivity such as heat sink of the electronics or light. Carbon or ceramic materials like graphite, carbon nanotube or boron nitride are typical conductive fillers with good thermal or electical conductivity. Using these conductive fillers, the polymer composites in the market show wide range of thermal conductivity from approximately 1 W/mK to 20 W/mK, which is quite enhanced considering the thermal conductivity lower than 0.5 W/mK for most polymeric materials. The practical use of these composites, however, is yet limited to specific applications because most composites are still not conductive enough or too difficult to process, too brittle, too expensive for higher conductivity. For practical use of conductive composite, the thermal conductivity required depending on the heat releasing mode are studied first for simplified unit cooling geometry to propose thermal conductivities of the composites for reasonable cooling performance comparing with the metal heat sink as a reference. Also, as a practical design for heat sink based on polymer composite, composite and metal sheet hybrid structures are investigated for LED lamp heat sink and audio amplication module housing to find that this hybrid structure can be a good solution considering all of the cooling performance, manufacturing, mechanical performance, cost and weight.

A Study on Alternative Fan Selection and Verification in Military Electronic Equipment (방산용 전자장비의 팬 선정 및 검증에 관한 연구)

  • Jin, Sung Eun;Kim, Hwan Gu;Yoon, Eui Youl;Jeon, Hee Ho;Kim, Seung Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1091-1097
    • /
    • 2017
  • Sales of commercial-type cooling fans intended for application in military electronics are often discontinued during equipment production. This results in requirements for alternative fan selection as well as equipment performance and reliability tests, such as high-temperature operation testing. This study deals with alternative fan selection and verification methods that can be used during the production process. First, an alternative fan was selected by calculating the flow and pressure required to effectively cool the equipment, then the feasibility of the selected fan was verified using a reliable CFD heat dissipation analysis model. Following this, a high-temperature operation test was performed using the alternative fan in the equipment. Results demonstrated that the equipment satisfied its required function in a high-temperature environment, and the main parts as well as internal air temperature were found to be thermally stable.

Thermal Design of High Power Semiconductor Using Insulated Metal Substrate (Insulated Metal Substrate를 사용한 고출력 전력 반도체 방열설계)

  • Bongmin Jeong;Aesun Oh;Sunae Kim;Gawon Lee;Hyuncheol Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.1
    • /
    • pp.63-70
    • /
    • 2023
  • Today, the importance of power semiconductors continues to increase due to serious environmental pollution and the importance of energy. Particularly, SiC-MOSFET, which is one of the wide bandgap (WBG) devices, has excellent high voltage characteristics and is very important. However, since the electrical properties of SiC-MOSFET are heatsensitive, thermal management through a package is necessary. In this paper, we propose an insulated metal substrate (IMS) method rather than a direct bonded copper (DBC) substrate method used in conventional power semiconductors. IMS is easier to process than DBC and has a high coefficient of thermal expansion (CTE), which is excellent in terms of cost and reliability. Although the thermal conductivity of the dielectric film, which is an insulating layer of IMS, is low, the low thermal conductivity can be sufficiently overcome by allowing a process to be very thin. Electric-thermal co-simulation was carried out in this study to confirm this, and DBC substrate and IMS were manufactured and experimented for verification.