• Title/Summary/Keyword: 방연

Search Result 61, Processing Time 0.02 seconds

The Leakage Crack Calculation of the Fire Door and the Stack Effect Analysis (방화문의 누설틈새 계산 및 연돌효과 분석)

  • Kim, Il-Young;Kwon, Chang-Hee
    • Fire Science and Engineering
    • /
    • v.27 no.2
    • /
    • pp.46-53
    • /
    • 2013
  • The architecture environment has changed. The corresponding design criteria should be changed. From July 27th, 2005 the Korea Standard of the fire door changed concerning the smoke resistance test which made the door gap structure more elaborate. However the National Fire Safety Codes are applied by the old data's of England. Which in case differs in the actual construction to the blue print, making the safety standard too excessive. Analyze the results and the phenomenon that occurs due to the difference between design and reality. The National Fire Safety Codes should be revised to leakage crack calculation is presented. Difference of the air flow for the smoke protection due to the stack effect analyzed. Living patterns and evacuation patterns of the apartment reflect and reasonable air flow measurement method are presented.

Pressure Differentials in the Elevator Lobby Depending on the Evacuation Scenarios (피난 시나리오에 따른 승강장 부속실 차압 특성 연구)

  • Park, Yong-Hwan
    • Fire Science and Engineering
    • /
    • v.21 no.4
    • /
    • pp.38-43
    • /
    • 2007
  • The aim of this paper is to investigate the change of pressure differential and smoke propagation characteristics in the elevator lobby with the resident's evacuation scenarios using fire modelling technique. The results showed absolute pressures in the fire room and elevator lobby can significantly increase to cause fire door to the stairway unclosed once it is open. This is due to constant pressure differentials, the increasing reference pressure of fire lobby and pressure leak from elevator lobby to fire lobby. Smoke exhaust mechanism was needed to prevent the continuous pressure rise in the living room. Over 200 Pa was expected upon closing the door during pressurization, which provide difficulties in opening the door for next refugee. Opening both fire door and entrance door may induce smoke flow from fire room to elevator lobby and stairway.

A Study on the Smoke Control in Pressure Differential Systems (급기가압 제연댐퍼 위치에 따른 방연풍속특성 및 성능개선방안에 관한 연구)

  • Bae, Sang-Hwan
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.239-244
    • /
    • 2011
  • This study is aimed to develop fundamental technology on the smoke control method by simulation model and scale model simulation technique in pressure differential systems. Thereby, this research aimed to establish design elements and technologies required for smoke control system that is suitable to pressure differential systems of the high-rise buildings in order to minimize the loss of lives and property damage in case of fire.

  • PDF

Field Experiments on Features of Airflow through Open Door in Pressure Differential System (급기가압 제연시스템의 피난문 개방시 방연풍속 형성특성에 대한 현장실험)

  • Kim, Jung-Yup;Rie, Dong-Ho;Kim, Ha-Young
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.463-467
    • /
    • 2008
  • The fact that the major cases of life casualties are from smoke in the fire accidents and the expected steep increase of skyscrapers, huge spaces, multiplexes and huge scaled underground spaces demand establishment of efficient smoke countermeasure. The field experiments on pressure differential systems for smoke management in two high buildings of 20 stories and 21 stories are carried out to evaluate the features of airflow through open door between accommodation and lobby. The procedures and results of experiments are presented.

  • PDF

Pressure Differentials in the Elevator Lobby Depending on the Reference Pressures of the Pressurizing Dampers (급기가압 댐퍼의 설정 기준압에 따른 부속실 차압 특성 연구)

  • Park, Yong-Hwan
    • Fire Science and Engineering
    • /
    • v.21 no.4
    • /
    • pp.12-17
    • /
    • 2007
  • This paper investigated pressure differentials in the elevator lobby depending on reference pressures of the pressurizing damper using FDS fire modeling. The results showed the temperatures and pressures in the contained fire room with small leak gaps can increase significantly. Setting reference pressure of the pressurizing dampers to 0 Pa can cause reduction of real pressure differentials and air velocity to resist smoke flow. This would cause smoke movement from fire room to elevator lobby which should be safe area for evacuation.

Numerical Analysis on Features of Airflow through Open Door in Pressure Differential System (급기가압 제연시스템의 방연풍속 형성특성에 대한 수치해석적 분석)

  • Kim, Jung-Yup;Rie, Dong-Ho;Kim, Ha-Young
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.463-468
    • /
    • 2008
  • The fact that the major cases of life casualties are from smoke in the fire accidents and the expected steep increase of skyscrapers, huge spaces, multiplexes and huge scaled underground spaces demand establishment of efficient smoke countermeasure. In pressure differential systems for smoke management, the speed of airflow through open door between accommodation and lobby should be maintained over 0.5m/s on the whole area of door to prevent smoke from infiltrate into evacuation root when the door is open for refuge. The numerical analysis on features of airflow through open door are carried out and the results are presented.

  • PDF

A Study on the Fire Door Performance Method of Pressurized Room for Special Evacuation Stairwells (특별 피난계단의 부속실 출입문 성능 방안에 관한 연구)

  • You, Woo-Jun;Nam, Jun-Seok;Ryou, Hong-Sun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.12-16
    • /
    • 2010
  • 본 연구에서는 건설현장의 특별 피난계단 출입문 크기와 구조의 다양성을 고려한 자동폐쇄장치의 설계방안을 제시하였다. 이를 위해서 급기가압실의 방연풍속, 누설량 그리고 송풍기의 용량이 일정한 경우 출입문이 폐쇄되기 위한 힘의 상관관계를 회전각도와 회전속도의 변화에 따라서 분석하였으며, 방화문의 폭이 1,100 mm, 1,300 mm 인 경우 각각에 대해서 개방력과 폐쇄력을 측정하였다. 그 결과 현장 조건을 만족할 수 있는 자동폐쇄장치에 의한 방화문의 폐쇄조건 및 회전각도와 회전속도의 변화를 고려한 개방력과 폐쇄력의 최적 설계범위가 존재함을 확인하였다.

  • PDF

Full Scale Testing of the Effect of Stairwell Pressurization on Pressure Differential and Flow Velocity

  • Son, Bong-Sae;Park, Kyung-Hwan;Chang, Young-Bae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.83-89
    • /
    • 2011
  • A series of full-scale testing was conducted to examine the effect of stairwell pressurization on the pressure differential between the stairwell and the auxiliary room and between the auxiliary room and the residence. Also, flow velocity profiles at open doors were measured. The building tested was a condominium that had twenty floors above the ground and two floors underground. For pressurization of the stairs, a blower was used to supply air into the stairwell at one location underground. Thirteen different cases were tested, and test variables included the number of floors with open doors and the flow rate of the air supply. When the doors on the first floor were open, the pressure differential between the stairwell and the auxiliary room was distributed almost uniformly except for locations near the first floor. When the flow rate was in the range of 180~270 CMM and the doors of one floor were open, the flow velocity could satisfy the requirement of fire safety standards and the stairwell pressure was positive at all levels. However, the minimum pressure requirement (10 Pa) could not always be satisfied. When doors on two floors were open, the flow velocity requirement could be satisfied by increasing the flow rate, but it was found impractical to satisfy the minimum pressure requirement without causing excessive pressure differential in the area near the blower.

A Study on the Pan-Jang in the Joseon Dynasty (조선시대 판장(板墻)에 관한 연구)

  • Oh, Jun-young;Kim, Young-mo
    • Korean Journal of Heritage: History & Science
    • /
    • v.49 no.1
    • /
    • pp.68-83
    • /
    • 2016
  • Pan-jang(板墻) has become the lost facility, and the examples of its original form can be found no more due to its variable material characteristics. In order to study panjang as a lost facility, the following are needed: - To bring to light its usage and examples. - To investigate its components and structure. Panjang refers to the wall made of wooden plate and is classified as a special wall according to its material characteristics. In addition, Chinese mokyeongbyuk(木影壁) and Japanese panbyeong(板?) are similar to Korean panjang in terms of the materials, but there are clear differences in their structures. Panjang was also transformed into various types according to their materials or forms. As the wooden elements of panjang, sinbang(信防), pillars, do-ri(道里), jungbang(中枋), inbang(引枋), parn(板), dae(帶), choyeop(草葉), bangyeon(方椽), gaeparn(蓋板), pyeonggodae(平高臺), and yeonharm(椽檻) were selectively used, and they are similar, in particular, to the components of ilgakmoon(一角門). The stylobate of panjang is largely classified into three according to the kinds and structures of the wooden elements; and its frame into two according to whether sanginbang(上引枋) is used or not. The materials for the roof area include planks(蓋板) and tiles and have the distinct structural differences according to each material.

A Study on the Pressure Change during the Pressurization to the Elevator Lobby (부속실 급기가압 시 압력특성 변화에 관한 연구)

  • Kim, Beom-Kyue;Park, Yong-Hwan;Kim, Hong-Sik
    • Fire Science and Engineering
    • /
    • v.26 no.5
    • /
    • pp.99-104
    • /
    • 2012
  • This study investigated the pressure change in the fire room and elevator lobby during the air pressurization to the Elevator lobby with the various egress scenarios and the existence of vent holes in the fire room. The experiments revealed that pressure change was significantly affected by the open/closure scenarios of the front door and stairway door resulting in over pressure, under pressure and performance drop of the door closure. It also revealed that the required smoke defensive air velocity can be obtained only with the existence of vent holes in the fire room by the removal of back pressure in the fire room.