• Title/Summary/Keyword: 방사파워

Search Result 90, Processing Time 0.021 seconds

A study on the arrangement of actuators and speaker zones of the panel speaker (패널 스피커의 가진기 및 스피커 배치에 관한 연구)

  • Jung-Han Woo;Seong-Hyun Lee;Yun-Ho Seo;Pyung-Sik Ma;Dongjoon Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.388-394
    • /
    • 2023
  • When the vibration of the thin panel by exciting single point is used to radiate sound, the inherent vibration characteristic of the plate itself causes influence on the radiated sound. A conventional panel speaker system usually uses the single or double point excitations for generating the sound through the panel itself. The radiated sound can be easily distorted due to the modal characteristics of the plate so it is difficult to expect sufficient sound power or high radiation efficiency. In this paper, to achieve an immersive sound field, the multiple speaker zones on a thin panel are created with the limited number of actuators. The designated vibration field which can generates directional sound is realized by employing the vibro-acoustic inverse rendering methods. Actuators are arranged from the positions which have the advantage of implementing with multi-modal excitations. The location and number of actuators are compared with the location and number of controllable speaker zones by conducting numerical simulations.

A Quantitative Separation Method of Structure and Air Borne Sound Power from the Enclosure (차음구조물의 방사음향파워로부터 고체 및 공기전파음향파워의 정량적인 분리법)

  • 김의간;강동림
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.85-96
    • /
    • 1992
  • Engine enclosures are widely adopted to reduce the noise emission in various fields of application. The radiated noise, which is due to the vibration of enclosure's outer surface, is composed of two kinds of sound power with different path of propagation. One is the 'structure-borne sound power' which stems from the engine's vibratory force applied to the structure of enclosure through the mounting parts of engine etc., while the other is the 'air-borne sound power' which is originated by the sound power radiated from the engine surface to the inner space of enclosure that should excite the vibration of enclosure from inside. In order to get a most efficient engine enclosure is required a profound consideration upon the above structure-borne and air-borne noise, since the guiding principle of countermeasure for each noise is quite different. The controlling of input vibration and its isolation are major subject for the structure-borne sound power and the specifications of absorbing member and damping panels are the major interests for the air-borne sound power. Hence it seems very efficient to separate the total sound power into two categories with a great accuracy when one think of further reduction of engine noise from the exciting enclosure, however, its separating methods have not been made clear for many years. Then author proposes a new practical separation method of two propagation path's contribution to the total radiation sound power for the enclosure under the engine operating condition.

  • PDF

Power Factor Compensation for Wideband Acoustic Projector Using Measurement Data and ABCD matrix (ABCD 전송 파라메터를 사용한 광대역 음향 발신기의 역률 개선 연구)

  • Lim, Jun-Seok;Pyeon, Yong-Guk
    • 전자공학회논문지 IE
    • /
    • v.48 no.3
    • /
    • pp.10-15
    • /
    • 2011
  • In the case of designing an acoustic transducer for high power application, we usually aim to transfer the source electric energy to the output acoustic energy as large as possible. For this purpose, we should match the impedance of the power amplifier to the impedance combined with the acoustic transducer impedance and the radiation impedance. Especially if we have electrical source with almost zero impedance, we need improve the power factor of the acoustic transducer in the load. In this paper, we propose a broad band impedance matching method by the improvement of power factor, which applies ABCD matrix.

Numerical Study on Shape Optimization of a Heaving Hemisphere Wave Energy Converter (상하 운동 반구형 파력 발전기의 최적 형상 조건 수치해석)

  • Kim, Sung-Jae;Koo, Weoncheol;Heo, Kyung-Uk;Heo, Sanghwan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.4
    • /
    • pp.254-262
    • /
    • 2015
  • Parametric study on submerged body shape of an oscillating hemisphere point absorber was conducted to predict the optimal relation between radius and draft of the body. As an additional damping due to power takeoff system, the optimal damping same as wave radiation damping was applied to the PTO system to produce the maximum wave power. Body response spectrum and power spectrum were obtained for various peak frequencies on wave spectra. It was found that the maximum power can be generated when the peak frequency of available wave power was 20% greater than that of wave spectrum.

Magnitudes of the Harmonic Components Emitted from Utrasonic Contrast Agents in Response to a Diagnostic Utrasound: Theoretical Consideration (진단용 초음파에 의해 가진된 초음파 조영제에서 방사하는 하모닉 성분의 크기: 이론적 고찰)

  • Kang Gwan Suk;Yu Ji Chul;Paeng Dong Guk;Rhim Sung Min;Choi Min Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.78-86
    • /
    • 2005
  • This study considers the magnitude of the harmonic components radiated from the ultrasonic contrast agents (UCA) activated by a typical diagnostic ultrasound. The nonlinear dynamic response of UCA to a 2 MHz diagnostic ultrasound pulse was predicted using Gilmore Model. The elastic property of the shell membrane of the UCA was ignored in the numerical model. Simulation was carried out for the UCA varying from 1 - 9 $\mu$m in its initial radius and the driving diagnostic ultrasound whose mechanical index (MI) ranges from 0.125 to 8. The powers of the sub. ultra and second harmonics of the acoustic signal from the UCA activated were compared with that of the fundamental component. The results show that. if the UCA is bigger than its resonant size (2 $\mu$m in radius for the present case) the sub harmonic power was much bigger than the fundamental. In particular, the 2nd harmonic component currently used as an imaging parameter for the harmonic imaging, was predicted to be lower in power than both the sub and the ultra harmonic component. This study indicates that, for obtaining harmonic imaging with UCA, the sub or ultra harmonics could be taken as imaging parameters better than the 2nd harmonic component.

Study on the Acoustic Modes of a Short, Thick, Asymmetric Cylinder (비대칭 특성을 가진 짧은 후판 실린더의 음향 방사 모드에 관한 연구)

  • Lee, Hyeongill
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.2
    • /
    • pp.234-242
    • /
    • 2017
  • This study investigates vibro-acoustic characteristics of a short, thick cylinder containing a slot given a pined-free boundaries. Using the finite element analysis results, structural modes of the asymmetric cylinder (with a slot) are expressed as the linear combinations of modes of the symmetric cylinder made of same material with identical geometry except the slot. Based on synthesized modal vibrations, acoustic modes of the asymmetric cylinder are obtained with two approaches, i.e., Rayleigh integral calculation and modal expansion of the acoustic modes of the symmetric cylinder. Also, acoustic powers, max. sound pressure and directivity pattern are obtained from acoustic modes and verified with the boundary element analyses. Based on these results, the accuracy of proposed approaches in calculating the vibro-acoustic properties of a short, thick, asymmetric cylinder has been confirmed. The procedure can be applied to the similar cylinders with other boundaries or asymmetric properties. Also, attenuation of vibration and/or sound radiation of the cylinder type practical components can be studied using these approaches.

Acoustic Source Power Control and Global Noise Reduction by Selection of Distribution and Impedance of Absorptive Materials in Acoustically Small Enclosures (흡음재의 배치와 임피던스 선정을 통한 음원 방사파워 제어와 전역 소음 감소)

  • 김양한;조성호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.668-674
    • /
    • 2004
  • The possibility of global noise reduction by the sound power control through selection of distribution and impedance of absorptive materials is discussed. It is necessary to investigate the relation between the global sound energy in the field and the total sound power radiated by sources. In the previous work,$^{(1.2)}$ the authors presented a useful design method to change boundary condition that can be useful to reduce noise in acoustically small enclosures. Changing boundary condition Is related to not only enclosure’s geometrical shape but also acoustical treatment on walls for example, attaching of impedance patches (ex: absorptive material). In many practical situations, we often meet situation to change acoustical treatment on walls. The possibility of total acoustic potential energy(globa1 noise) reduction by acoustic source power control is examined in an acoustically small cavity Using acoustic energy balance equation, the relation between global noise control performance and absorptive material’s arrangement/impedance is deduced. Numerical simulation is performed to interpret its physical meaning in terms of absorbent’s distribution and impedance.

A Numerical Analysis Study on the Estimation of the 3D Underwater Radiated Noise Pattern using the Hull Vibration Signals (선체진동신호를 이용한 3차원 수중방사소음 패턴 산출에 대한 수치해석 연구)

  • Yi, Jong-Ju;Kang, Myung-Hwan;Han, Seung-Jin;Bae, Soo-Ryong;Kim, Jae-Ho;Jung, Woo-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.10
    • /
    • pp.770-779
    • /
    • 2014
  • In this study, a numerical estimation method for 3D underwater radiated noise pattern using hull vibration and total acoustic power of the vibrating structure in the far-field is proposed. The underwater radiated noise pattern is known to be predicted using the vibration signals and radiation efficiency of each surface patch. But it is very difficult to know radiation efficiency of each surface patch which is one of important factors to calculate the 3D underwater radiated noise pattern. Instead of using radiation efficiency of each patch, the underwater radiated noise level is modified with the total acoustic power of the vibrating structure. The suggested estimation method for underwater radiated noise pattern is discussed with numerical model.

Interaction Analysis on Deployment of Multiple Wave Energy Converters in a Floating Hybrid Power Generation Platform (부유식 복합발전 플랫폼내의 다수 파력발전기 배치를 위한 상호작용 해석)

  • Lee, Hyebin;Cho, Il Hyoung;Kim, Kyong-Hwan;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.3
    • /
    • pp.185-193
    • /
    • 2016
  • In this study, the present deployment of the multiple wave energy converters (WECs) in a floating wind-wave hybrid power generation platform was estimated considering the interaction effect among WEC buoys. The interaction processes of multiple buoys were very complex, since scattered and radiated waves from each buoy affected the others in the array. The interaction analysis of the diffraction and radiation problem by the array of WECs was applied by matched eigenfunction expansion method (MEEM). The analytical solutions were compared with the results of numerical calculation based on WAMIT. The overall performance of 24 WECs installed in the hybrid power generation platform was evaluated by the q-factor representing the interaction effect among buoys.

Comparison and Evaluation of Root Mean Square for Parameter Settings of Spatial Interpolation Method (공간보간법의 매개변수 설정에 따른 평균제곱근 비교 및 평가)

  • Lee, Hyung-Seok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.3
    • /
    • pp.29-41
    • /
    • 2010
  • In this study, the prediction errors of various spatial interpolation methods used to model values at unmeasured locations was compared and the accuracy of these predictions was evaluated. The root mean square (RMS) was calculated by processing different parameters associated with spatial interpolation by using techniques such as inverse distance weighting, kriging, local polynomial interpolation and radial basis function to known elevation data of the east coastal area under the same condition. As a result, a circular model of simple kriging reached the smallest RMS value. Prediction map using the multiquadric method of a radial basis function was coincident with the spatial distribution obtained by constructing a triangulated irregular network of the study area through the raster mathematics. In addition, better interpolation results can be obtained by setting the optimal power value provided under the selected condition.