• Title/Summary/Keyword: 방사선 선량

Search Result 3,593, Processing Time 0.045 seconds

A Study on the Radiation Exposure Dose of Clinical Trainees in the Department of Radiology: A Case Study at C University Hospital (방사선(학)과 임상실습생의 수시출입자 피폭선량에 대한 고찰: C 대학병원 사례 연구)

  • Joo-Ah Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.2
    • /
    • pp.249-255
    • /
    • 2023
  • In this study, radiation exposure doses were measured in the course of clinical practice of radiation workers, radiological technologists in the radiation-related worker group, and preliminary-radiological technologists who were classified as frequent visitors. Radiological technologists who worked in the radiation area of C University Hospital in Incheon for a year from January 2021 and 121 students who completed clinical practice at the same medical institution from July 1 to August 31 were the subjects of the study. The nominal risk factor based on ICRP 103 was used to evaluate the probability of side effects due to the exposure dose to the lungs, which are organs at risk of damage due to radiation exposure dose. During the clinical practice period, radiology students, who were classified as frequent visitors, had a surface dose of 0.98 ± 0.14 mSv and a deep dose of 0.93 ± 0.14 mSv. In other words, 6.7 per 1,000,000 for shallow dose and 6.4 per 1,000,000 for deep dose were found to have side effects due to exposure to the lungs. This is a value in terms of exposure dose in one year. Considering that the radiation (science) education course is 3 or 4 years, systematic management and attention to prospective radiation workers who are going to clinical practice are required, and the stochastic effect of radiation In relation to this, it is considered that it will be used as basic data for radiation safety management.

Evaluation of Usability and Radiation Dose Measurement Using Personal Radiation Exposure Dosimeter (방사선 개인피폭선량계를 이용한 피폭선량 측정 및 유용성 평가)

  • Kang, In-Seog;Ahn, Sung-Min
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.11
    • /
    • pp.864-870
    • /
    • 2014
  • To propose a basis for the selection of personal dosimeters to measure radiation dose administration of radiation workers as a way to evaluate the usefulness dosimeter. For the dosimetry of the radiation workers 2012, during 1 year, 30 were radiation workers to measure personal dose. By personal exposure is measured cumulative dose, is investigated the performance of the TLD, PLD, OSLD. And comparing the measured value of each dosimeter dose and analyzed. Medical institutions, inspection work and quarterly confirmed the cumulative exposure dose of radiation workers. Using DAP and Ion-Chamber, to measure to compare TLD, PLD, OSLD dosimeter performance. A comparison of the directly through the X-ray dosimeter and The absolute value of the Ion-Chamber, OSLD more similar than in the TLD and PLD showed the dose values so the excellent ability to measure the results. Also in radiation generating area dose of radiation workers is higher than that in OSLD. Consequently, in terms of the individual exposure management OSLD is appropriated and beneficial than others.

Calculation of Man-made Radiation Exposure Rate from NaI Spectrum (NaI 스펙트럼으로부터 인공방사선 조사선량의 계산)

  • Lee, M.S.
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.2
    • /
    • pp.113-117
    • /
    • 2001
  • The energy band method for NaI spectrum calculates only the exposure rate due to natural radiation because it calculates exposure rate using energy spectrum of $1300{\sim}3000keV$. However, the total energy method includes in its calculation the exposure rate due to man-made radiation because it uses the energy spectrum of $150{\sim}3400keV$. Therefore, the resulting difference of extracting the exposure rate calculated by the energy band method from the exposure rate calculated by the total energy method is apparently the exposure rate due to man-made radiation. In this study, we measured the NaI spectrum during the period of significant changes of the exposure rate in the area without a man-made radiation. As the results, we found the exposure rates calculated by those two methods are equal within the statistical variation of ${\pm}0.3{\mu}R\;h^{-1}$. Consequently, if the difference between the exposure rates calculated by the two methods exists, it may be due to the man-made radiation exposure rate.

  • PDF

Dose Calculation of Heterogeneous Lung Tissue on 6MV X-ray Therapy (6MV X-선에 의한 폐조직의 심부선량변화와 임상응용)

  • 이경자;장승희;추성실
    • Progress in Medical Physics
    • /
    • v.9 no.4
    • /
    • pp.247-257
    • /
    • 1998
  • For effective radiotherapy, it should always be considered that calculation of different dose distribution in heterogenous tissue is important particularly on lung which has low density and large volume. To take precise dose distribution of 6MV X-ray in the thoracic cage, the authors had made a tissue equivalent phantom for thorax, measured dose distribution by thermoluminescent dosimeter and mm dosimeter, and derived methmetical equation coincided with provided theoretical formula. In comparision with isodose curve on case of homogeneous soft tissue, dose of heterogeneous lung tissue had been shown increase about 4% per cm depth on one and multiportal field, less than 15% difference on rotation field for esophagus, and around 20% difference on rotation field for lung according to the degree of rotation angle that must be corrected by dose compensation.

  • PDF

Analysis of individual exposure dose of workers and clinical practice students in radiation management area (방사선관리구역내의 종사자 및 임상실습 학생의 개인피폭선량 분석)

  • Lee, joo-ah;Kay, chul-seung
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2017.05a
    • /
    • pp.307-308
    • /
    • 2017
  • 방사선구역내의 종사자 간의 피폭선량 비교와, 동일한 구역내에서 임상실습에 임하는 학생들의 선량을 비교하여 방사선방어의 최적화에 대한 기초자료를 제공하고자 하였다. 연구대상은 2016년 1월부터 동년 12월까지 C대학병원 방사선관리구역에 재직중인 방사선관계종사자 121명과 방사선작업종사자 36명, 그리고 8주간의 임상실습을 이수한 121명의 학생을 비교 대상으로 하였다. 방사선관계종사자와 작업종사자 간의 평균 심부 및 표층선량은 관계종사자가 각각 $.7440{\pm}1.676mSv$$.7753{\pm}1.730mSv$ 가장 높게 나타났으며, 통계적으로 매우 유의하였다(p<.01). 3그룹간에는 심부선량의 경우 임상실습학생이 $.143{\pm}.136mSv$로 가장 높게 나타났고, 표층선량에서도 $.1513{\pm}.139mSv$로 가장 높게 나타났으며, 작업종사자가 두 경우 모두 가장 낮았으며, 그룹간의 평균의 차이는 통계적으로 매우 유의하였다(p<.01). 결론적으로 ALARA 원칙에 의거 철저한 관리가 필요하며, 특히 방사선안전관리의 사각지대에 놓여 있는 임상실습 학생에 대한 체계적인 피폭선량 관리가 필요할 것으로 사료된다.

  • PDF

혈관내벽에 홀뮴-166 방사선 분할 조사시 흡수선량 분포

  • 조철우;윤석남;윤준기;이명훈;탁승재;최소연;박경배
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.70-70
    • /
    • 2003
  • 경피적관상동맥성형술(CPTCA)이나 스텐트삽입술 후에 발생하는 재협착을 방지하기 위한 방사선을 조사하는 방법 중에 베타 입자를 방출하는 액체 선원을 catheter풍선 내에 넣어 일정 시간 방사선 조사 시키는 방법이 있다. 조사시킬 혈관의 길이가 길어 한번의 방사선 조사가 어려울 경우 영역을 분할하여 두 번에 나누어 조사할 경우가 있다. 조사영역의 겹치는 부근의 흡수선량이 고선량이나 저선량이 되는가를 알기 위하여 두 풍선간의 접근 거리에 따른 혈관내벽의 흡수선량 분포를 알아보았다. 풍선내의 액체 선원은 Ho-l66을 이용하였고 Ho-l66의 물리적 반감기는 26.8시간이고 최대에너지 1.85 MeV, 평균에너지 0.69 MeV와 최대에너지 1.77 MeV, 평균에너지 0.65 MeV를 갖는 베타 입자를 방출한다. Ho-l66 의 방사선 흡수선량을 측정하기 위하여 GafChromic 필름(Nuclear Associates, Carle Place, NY, USA)을 이용하였고, 방사선이 조사된 필름의 optical density는 videodensitometer(Wellhofer, Schwarzen-bruck, Germany)를 이용하여 값을 읽었다. Catheter 풍선은 직경이 3 mm 이고 길이가 20 mm인 것을 이용하였다. 혈관 내벽의 최대 흡수선량을 표준화하여 겹치는 부분의 흡수선량 분포를 접근 거리에 따라 구하였다. 또한 몬테카를로 시abf레이션으로 확인하였다. 두 풍선의 겹치는 부근의 선량 분포는 풍선 중앙에서 중앙사이의 거리가 21 mm 일 때 중앙에서 20% 증가하였고, 거리가 22 mm일 때와 23 mm일 때 각각 10%와 40%의 감소를 보였다. 풍선 도자의 풍선 안에 베타입자 방출 액체 선원을 넣어 혈관내벽에 방사선 조사하는 방법은 비정거리가 짧아 혈관 내벽 부근에만 방사선을 조사시키고 그 외 중요 장기에는 영향을 덜 미치는 장점이 있다. 그러나 혈관 내벽 표면으로 부터의 거리에 따라 흡수선량이 급격히 떨어지는 분포를 이루기 때문에 두 개의 풍선이 겹치는 부근의 흡수선량은 아주 작은 접근 거리에서도 급격한 변화를 보였다. 따라서 시술 중에 겹치는 부분을 아주 적게 분할하여 정확하게 차례차례로 조사시키기 위해서는 신중한 거리 조정을 하여야 한다.

  • PDF

Comparison of dose-variation in skin due to Set-up error in case of radiation therapy for left breast using Volumetric Modulated Arc Therapy(VMAT) (좌측 유방에 대한 용적 변조 회전 방사선 치료 시 자세 오차로 인한 피부 선량)

  • Kwon, Yongjae;Park, Ryeunghwang;Kim, Seyoung;Jung, Dongmin;Baek, Jonggeol;Cho, Jeonghee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.55-62
    • /
    • 2021
  • Purpose: This study aims to contribute to the reduction of complications of breast cancer radiation therapy by analyzing skin dose differences due to Set-up error. Materials and Method: Pseudo breast was produced using a 3D printer, applied to the phantom, and images were acquired through CT. Treatment plan was carried out that the PTV, which contains 95% of the prescription dose, could be more than 95% of the volume, so that Dmax did not exceed 107% of the prescription dose. The Set-up error was evaluated by applying ±1mm/±3mm/±5mm to the X-axis, Y-axis, and Z-axis. Results: The dose-variation in skin due to Set-up error was approximately 106% to 123% compared to prescription dose, and the highest dose in skin was 49.24 Gy at 5mm Set-up error in the lateral direction of the X-axis. More than 107% of the prescription dose was the widest at 6.87 cc in skin lateral. Conclusions: If a Set-up error occurs during left breast cancer VMAT, a great difference in skin dose was shown in the lateral direction of the X-axis. If more effort is made to align the X-axis of the breast treated during CBCT registration, the dose-variation of skin will be reduced.

High Energy Photon Dosimetry by ESR Spectroscopy in Radiotherapy (ESR Spectroscopy에 의한 치료용 고에너지 광자선의 선량측정)

  • Chu, Sung-Sil
    • Progress in Medical Physics
    • /
    • v.1 no.1
    • /
    • pp.31-42
    • /
    • 1990
  • The finding of long lived free radicals produced by ionizing radiation in organic crystals and the quantification of this effect by electron spin resonance(ESR) spactroscopy has proven excellent dosimetric applicability. The tissue equivalent alanine dosimeter also appear appropriate for radiation therapy level dosimetry. The dose measurement was performed in a Rando phantom using high energy photons as produced by high energy medical linear accelerator and cobalt-60 teletherapy unit. The absorbed dose range of the ESR/alanine dosimetry system could be extended down to 0.1 Gy. The response of the alanine dosimeters was determined for photons at different therapeutic dose levels from less than 0.1 Gy to 100 Gy and the depth dose measurements were carried out for photon energies of 1.25MeV, 6 and 10 MV with alanine dosimeters in Rando phantom. Comparisons between ESR/alanine in a Rando phantom and ion chamber in a water phantom were made performing depth dose measurements to examine the agreement of both methods under field conditions.

  • PDF

A Study on the Environmental Radiation Dose Measurement in the Nuclear Medicine Department (핵의학과에서 환경방사선량 측정에 대한 연구)

  • Kang, Bo-Sun;Lim, Chang-Seon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.2118-2123
    • /
    • 2010
  • Korean individual occupational exposure control is focused on the retrospective service to the over-exposed person by the reading of personal dosimeter. Since the radiophamaceuticals using in the nuclear medicine department are uncontained radiation sources, the potential exposure at working environment is very high. Moreover, a patient remains radioactive for hours or even days after the administration of a radiopharmaceutical for diagnosis or treatment. Thus, the proper working environmental exposure control must be established and executed to protect not only the affiliated employees, but also guardians accompanying patients and temporarily visiting public from the exposure by the patients. Japanese radiation protection law regulates working environmental radiation exposure by regularly measuring and filing the environmental dose for years. This study was aimed at measuring working environmental radiation dose in the nuclear medicine department of an university hospital located in Daejeon, Korea. We measured the accumulation radiation dose in air at 8 locations in the nuclear medicine department by using the same method as in Japan with glass dosimeters. The highest dose rate, 0.23 mSv per month, was measured at the waiting room, and the second one is at reception desk. Even though the doses were lower than the Korean constraint dose rate (0.3 mSv/week) at the boundary of the radiation controlled area, it was over the dose limit of public (1 mSv/y) and environment (0.25 mSv/y). Conclusionally, it was found that the new or additional procedure was necessary to less the exposure dose to the receptionist and guardians by the environmental radiation dose in the nuclear medicine department.