• Title/Summary/Keyword: 방사선피폭

Search Result 1,257, Processing Time 0.032 seconds

A Study on the Exposure Dose of Workers and Frequent Workers in the Radiology Department (방사선(학)과의 작업종사자와 수시출입자의 교내 실습에 따른 피폭선량에 대한 고찰)

  • Jeon, Seong-Min;Lee, Yong-Ki;Ahn, Sung-Min
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.3
    • /
    • pp.355-359
    • /
    • 2021
  • In this study, the purpose of this study was to analyze the degree of exposure of radiation workers assigned to the Department of Radiology and frequent visitors during on-campus practice, and to conduct a basic study on the feasibility and optimization of the radiation protection of the Nuclear Safety Act for the Department of Radiology. . The average exposure dose of occupational workers by year was 0.01 mSv, the lowest in 2014 and 2016. The highest figure was 0.12 mSv in 2018. The average exposure dose of frequent visitors by year was the lowest at 0.013 mSv in 2018, and the highest at 0.022 mSv in 2016. According to this study, the annual exposure dose received by professors, practical assistants, and students in the department of radiology (department) who use only radiation generators in the course of in-school practice is less than 1 mSv, which is the dose limit for the general public. Therefore, at the time when the radiation dose of students in the Department of Radiology is lower than the dose limit of the general public, the current safety regulation of the Nuclear Safety law is judged to be excessive regulation. Therefore, it is considered necessary to revise the regulations for radiation generators in the current Nuclear Safety law or to revise the radiation safety management system for university students.

Reading and Influence of Personal Dose Meter in University Hospital C (C 대학병원의 개인선량계 판독과 영향)

  • Lee, Joo-Ah
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.357-363
    • /
    • 2022
  • This study aims to improve the safety inspection awareness of occupational exposure and help radiation safety management by analyzing radiation exposure doses by occupational type of radiation related-workers and radiation workers. Radiation-related workers and radiation workers were classified into three occupations (radiological technologist, doctors, and nurses). A nominal risk coefficient based on ICRP 103 was used to calculate the probability of causing side effects of the lungs due to exposure doses. As a result of analyzing the exposure dose of all workers for one year, the exposure dose of radiological technologist among radiation-related workers was 1.63 ± 2.84 mSv, doctors 0.12 ± 0.22 mSv, and nurses 0.59 ± 1.08 mSv. The one-year deep dose for radiation workers was 2.44 ± 3.30 mSv for radiological technologists, 0.19 ± 0.26 mSv for doctors, and 0.12 ± 0.00 mSv for nurses. Due to this dose, the probability of causing side effects in the lungs was 1.2 per 100,000 radiological technologist, 0.096 doctors, and 0.06 nurses. In this study, it is believed that the probability of side effects on lungs by occupation of radiation exposure dose will be studied and used as useful data for radiation safety management in relation to probabilistic effects in the future.

Radiation Exposure of Operator in Intracoronary Radiotherapy Using $^{188}Re$ ($^{188}He$을 이용한 혈관내 방사선 치료시 시술자의 방사선 피폭 수준)

  • Chie, Eui-Kyu;Lee, Myung-Mook;Wu, Hong-Gyun
    • Journal of Radiation Protection and Research
    • /
    • v.25 no.4
    • /
    • pp.191-195
    • /
    • 2000
  • This study was undertaken to estimate the exposed dose of the medical personnel during the intracoronary radiotherapy procedure as a part of ongoing SPARE (Seoul National University Hospital Post-Angioplasty Rhenium) trial. Data of thirty-four patients among forty-two irradiated patients participating in this trial due to coronary artery stenosis were retrospectively analyzed. Intracoronary radiotherapy was delivered to the patient immediately after angioplasty ballooning. Prescribed dose was 17 Gy to media of the diseased artery and was delivered with $^{188}Re$ filled balloon catheter. Dosimetry was carried out with GM counter at eight different points. Ten centimeter and forty centimeter from the patient's heart were selected to represent maximum and whole-body exposed dose of the operator, respectively. Median delivered dose was 111.6 mCi with average treatment time of 576 seconds. Average exposed dose rate at 10 cm and 40 cm from the patient's heart were 0.43 mSv/hr and 0.30 mSv/hr, respectively. Average exposed doses per treatment were 0.07 mSv and 0.05 mSv for 10 cm and 40 cm from the patient's heart, respectively. Exposed doses measured are much lower than recommended limit of 50 mSv for radiation workers or 1 mSv for general population in ICRP-60. This study proves that current method of intracoronary radiotherapy incorporated in this trial is very safe regarding radiation protection.

  • PDF

Review on the Working Hours of Radiation Work Plan for ECT through In-service Inspection (원전 가동중 ECT 검사 방사선 작업시간 고찰)

  • Chae, Gyung-Sun
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.1
    • /
    • pp.57-63
    • /
    • 2004
  • As a part of In-service Inspection works in a nuclear power plant, Eddy Current Testing through all the outage of nuclear power plants has been controlled by the radiation management. From the case study about the periodical ECT work, the exposed dose rate of worker has announced over the organized dose rate before the radiation work, it affects the personnel exposed dose management and radiation work permit issue. It is not easy to get some information about ECT related working hours, scope of work and how many workers to forecast the radiation working and the predict dose exposure. It should be need the data accumulation about ECT related radiation work to prepare the ALARA achievement and the radiation work plan for dose mitigation. We can discuss a few information about ECT related radiation working issue for the application of predict dose exposure on this paper.

The Study for Radio Protection According to a Possible Danger of Exposure During low energy X-ray Examination (저 에너지 방사선 검사 시 노출 위험성에 따른 피폭선량 방어연구)

  • Lim, Cheong-Hwan;Jeong, Cheon-Soo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2011.05a
    • /
    • pp.187-188
    • /
    • 2011
  • 저 에너지 방사선검사 시 부득이하게 방사선 노출을 받게 되는 방사선 작업종사자나 환자의 보호자가 위치와 거리에 따른 방사선 피폭 선량의 감소 방안을 알아보고자 한다. Ion chamber mode 2026c, Reader기 20X6-1800을 사용하여 구강내 검사와 구강외 검사의 각각 검사실과 조정실에서의 관전압의 변화, 관전류와 조사시간의 변화, 조사방향의 변화에 따라 선량을 측정하였다. 그 결과 검사실 안에서는 최고선량이 평균 $702.8{\mu}R$으로 측정 되었으며, 조정실 안에서 측정하였을 경우 $20{\mu}R$이하의 낮은 선량을 보였으며, 후방검사보다 측방검사가 낮은 선량으로 나타났다. 방사선검사 시 위치와 거리에 따른 조사선량을 비교 분석하여, 적절한 거리 확보와 조사되는 중심방사선을 기준으로 측방($90{\sim}135^{\circ}$)에 위치함으로써 방사선 방어에 도움을 줄 것이며, 차폐문을 이용하여 방사선 피폭으로부터 감소 효과를 볼 수 있을 것이다.

  • PDF

A study on the usefulness of a fusion model designed cloak shield to reduce the radiation exposure of the assistant during CT of severely injured patient (중증외상환자 CT 검사 시 검사보조자의 방사선피폭 경감을 위한 융합적 망토 차폐체의 유용성 연구)

  • Seo, Sun-Youl;Han, Man-Seok;Kim, Chang-Gyu;Jeon, Min-Cheol;Kim, Yong-Kyun;Kim, Gab-Jung
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.9
    • /
    • pp.211-216
    • /
    • 2017
  • The purpose of this study is to evaluate the usefulness of a newly fusion model designed cloak shield to reduce the radiation exposure of the assistant during CT(computed tomography) of severely injured patient. Radiation dose was measured in the heart, both axillary and thyroid areas using newly designed cloak shield and existing shield with head phantom and human phantom under the same conditions as brain vascular CT scan. The newly designed cloak shield was measured higher for radiation shielding rate than the existing shields, 61.9 % for heart, 46.2 % for left axillary, 69.8 % for right axillary and 71.1 % for thyroid gland, respectively. a newly developed fusion model of cloak shields are useful for reducing radiation exposure. It is expected to make a significant contribution to reduction of radiation exposure.

A Study of Radiation Dose Reduction using Bolus in Medical Radiation Exam (볼루스를 이용한 방사선영상검사 피폭선량저감 연구)

  • Jeong-Min Seo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.1001-1007
    • /
    • 2023
  • Dose limits are not applied to medical radiation exposure therefore justification and optimization should be essential for protecting radiation. This study explores methods to reduce exposure dose undergoing general radiation exam by bolus(tissue equivalent material) with keeping image quality. Hand PA projection with 50 kVp, 5 mAs, SID 100 cm, and 8×10 inch is referred by covered bolus of thickness 0, 3, 5, 8, and 10 mm for evaluation entrance dose and SNR. The entrance dose (μGy) to the hand by bolus thickness was 125.41±0.288, 106.85±0.255, 104.97±0.221, 91.68±0.299, and 90.94±0.106 showing a significant reduction in radiation exposure depending on if the bolus was used and bolus thickness. The SNR of the image was 13.997, 13.906, 12.240, 12.538, and 12.548 at each bolus thickness, showing no significant difference. It was confirmed that if appropriate thickness and size of bolus is used depending on the type of radiological imaging exam and the body site, a significant radiation dose reduction effect can be achieved without deteriorating image quality.