• Title/Summary/Keyword: 방사선치료계획 장치

Search Result 157, Processing Time 0.027 seconds

3-D Conformal Radiotherapy for CNS Using CT Simulation (입체조준장치를 이용한 중추신경계의 방사선 입체조형치료 계획)

  • 추성실;조광환;이창걸
    • Progress in Medical Physics
    • /
    • v.14 no.2
    • /
    • pp.90-98
    • /
    • 2003
  • Purpose : A new virtual simulation technique for craniospinal irradiation (CSI) that uses a CT-simulator was developed to improve the accuracy of field and shielding placement as well as patient positioning. Materials and Methods : A CT simulator (CT-SIM) and a 3-D conformal radiation treatment planning system (3D-CRT) were used to develop CSI. The head and neck were immobilized with a thermoplastic mask while the rest of the body was immobilized with a Vac-Loc. A volumetric image was then obtained with the CT simulator. In order to improve the reproducibility of the setup, datum lines and points were marked on the head and body. Virtual fluoroscopy was performed with the removal of visual obstacles, such as the treatment table or immobilization devices. After virtual simulation, the treatment isocenters of each field were marked on the body and on the immobilization devices at the conventional simulation room. Each treatment fields was confirmed by comparing the fluoroscopy images with the digitally reconstructed radiography (DRR) and digitally composited radiography (DCR) images from virtual simulation. Port verification films from the first treatment were also compared with the DRR/DCR images for geometric verification. Results : We successfully performed virtual simulations on 11 CSI patients by CT-SIM. It took less than 20 minutes to affix the immobilization devices and to obtain the volumetric images of the entire body. In the absence of the patient, virtual simulation of all fields took 20 min. The DRRs were in agreement with simulation films to within 5 mm. This not only reducee inconveniences to the patients, but also eliminated position-shift variables attendant during the long conventional simulation process. In addition, by obtaining CT volumetric image, critical organs, such as the eyes and the spinal cord, were better defined, and the accuracy of the port designs and shielding was improved. Differences between the DRRs and the portal films were less than 3 m in the vertebral contour. Conclusion : Our analysis showed that CT simulation of craniospinal fields was accurate. In addition, CT simulation reduced the duration of the patient's immobility. During the planning process. This technique can improve accuracy in field placement and shielding by using three-dimensional CT-aided localization of critical and target structures. Overall, it has improved staff efficiency and resource utilization by standard protocol for craniospinal irradiation.

  • PDF

CT Simulation Technique for Craniospinal Irradiation in Supine Position (전산화단층촬영모의치료장치를 이용한 배와위 두개척수 방사선치료 계획)

  • Lee, Suk;Kim, Yong-Bae;Kwon, Soo-Il;Chu, Sung-Sil;Suh, Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.20 no.2
    • /
    • pp.165-171
    • /
    • 2002
  • Purpose : In order to perform craniospinal irradiation (CSI) in the supine position on patients who are unable to lie in the prone position, a new simulation technique using a CT simulator was developed and its availability was evaluated. Materials and Method : A CT simulator and a 3-D conformal treatment planning system were used to develop CSI in the supine position. The head and neck were immobilized with a thermoplastic mask in the supine position and the entire body was immobilized with a Vac-Loc. A volumetrie image was then obtained using the CT simulator. In order to improve the reproducibility of the patients' setup, datum lines and points were marked on the head and the body. Virtual fluoroscopy was peformed with the removal of visual obstacles such as the treatment table or the immobilization devices. After the virtual simulation, the treatment isocenters of each field were marked on the body and the immobilization devices at the conventional simulation room. Each treatment field was confirmed by comparing the fluoroscopy images with the digitally reconstructed radiography (DRR)/digitally composite radiography (DCR) images from the virtual simulation. The port verification films from the first treatment were also compared with the DRR/DCR images for a geometrical verification. Results : CSI in the supine position was successfully peformed in 9 patients. It required less than 20 minutes to construct the immobilization device and to obtain the whole body volumetric images. This made it possible to not only reduce the patients' inconvenience, but also to eliminate the position change variables during the long conventional simulation process. In addition, by obtaining the CT volumetric image, critical organs, such as the eyeballs and spinal cord, were better defined, and the accuracy of the port designs and shielding was improved. The differences between the DRRs and the portal films were less than 3 mm in the vertebral contour. Conclusion : CSI in the supine position is feasible in patients who cannot lie on prone position, such as pediatric patienta under the age of 4 years, patients with a poor general condition, or patients with a tracheostomy.

CORVUS Planning System를 사용한 세기조절방사선치료 시 환자치료의 정확성에 대한 검증

  • Kim, Myeong-Se;Kim, Seong-Gyu
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2005.04a
    • /
    • pp.39-41
    • /
    • 2005
  • 본 연구에서는 두경부암 환자에게 세기조절 방사선치료계획을 수립한 후 환자 위치의 정확한 재현성과 치료선량의 정확한 전달을 위한 정도관리를 본원에 설치되어 있는 21ex 선형가속기와 세기조절방사선치료계획 장치인 CORVUS 시스템을 사용하였다. 세기조절 방사선치료계획을 QA 아크릴 팬텀으로 옮겨 계산된 계산치가 1.50 Gy였으며, 같은 조건으로 QA 아크릴 팬텀을 설치하여 측정한 선량은 1.485 Gy였으며, TLD에서의 측정치는 1.483 Gy였다. 측정치의 비교에서 이온챔버와 TLD에서 각각 1.0%, 1.2%의 차이를 보여 세기조절방사선치료의 환자 적용에의 적합성을 확인하였다. 나아가 환자치료시 정확하게 치료되고 있는지에 대한 검정과정을 개발하였다.

  • PDF

Effect of Inhomogeneity correction for lung volume model in TPS (Lnug Volume을 모델로 한 방사선치료계획 시 불균질 조직 보정에 따른 효과)

  • Chung SeYoung;Lee SangRok;Kim YoungBum;Kwon YoungHo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.1
    • /
    • pp.57-65
    • /
    • 2004
  • Introduction : The phantom that includes high density materials such as steel was custom-made to fix lung and bone in order to evaluation inhomogeneity correction at the time of conducting radiation therapy to treat lung cancer. Using this, values resulting from the inhomogeneous correction algorithm are compared on the 2 and 3 dimensional radiation therapy planning systems. Moreover, change in dose calculation was evaluated according to inhomogeneous by comparing with the actual measurement. Materials and Methods : As for the image acquisition, inhomogeneous correction phantom(Pig's vertebra, steel(8.21g/cm3), cork(0.23 g/cm3)) that was custom-made and the CT(Volume zoom, Siemens, Germany) were used. As for the radiation therapy planning system, Marks Plan(2D) and XiO(CMS, USA, 3D) were used. To compare with the measurement value, linear accelerator(CL/1800, Varian, USA) and ion chamber were used. Image, obtained from the CT was used to obtain point dose and dose distribution from the region of interest (ROI) while on the radiation therapy planning device. After measurement was conducted under the same conditions, value on the treatment planning device and measured value were subjected to comparison and analysis. And difference between the resulting for the evaluation on the use (or non-use) of inhomogeneity correction algorithm, and diverse inhomogeneity correction algorithm that is included in the radiation therapy planning device was compared as well. Results : As result of comparing the results of measurement value on the region of interest within the inhomogeneity correction phantom and the value that resulted from the homogeneous and inhomogeneous correction, gained from the therapy planning device, margin of error of the measurement value and inhomogeneous correction value at the location 1 of the lung showed $0.8\%$ on 2D and $0.5\%$ on 3D. Margin of error of the measurement value and inhomogeneous correction value at the location 1 of the steel showed $12\%$ on 2D and $5\%$ on 3D, however, it is possible to see that the value that is not correction and the margin of error of the measurement value stand at $16\%$ and $14\%$, respectively. Moreover, values of the 3D showed lower margin of error compared to 2D. Conclusion : Revision according to the density of tissue must be executed during radiation therapy planning. To ensure a more accurate planning, use of 3D planning system is recommended more so than the 2D Planning system to ensure a more accurate revision on the therapy plan. Moreover, 3D Planning system needs to select and use the most accurate and appropriate inhomogeneous correction algorithm through actual measurement. In addition, comparison and analysis through TLD or film dosimetry are needed.

  • PDF

Evaluation of Corrected Dose with Inhomogeneous Tissue by using CT Image (CT 영상을 이용한 불균질 조직의 선량보정 평가)

  • Kim, Gha-Jung
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.2
    • /
    • pp.75-80
    • /
    • 2006
  • Purpose: In radiation therapy, precise calculation of dose toward malignant tumors or normal tissue would be a critical factor in determining whether the treatment would be successful. The Radiation Treatment Planning (RTP) system is one of most effective methods to make it effective to the correction of dose due to CT number through converting linear attenuation coefficient to density of the inhomogeneous tissue by means of CT based reconstruction. Materials and Methods: In this study, we carried out the measurement of CT number and calculation of mass density by using RTP system and the homemade inhomogeneous tissue Phantom and the values were obtained with reference to water. Moreover, we intended to investigate the effectiveness and accuracy for the correction of inhomogeneous tissue by the CT number through comparing the measured dose (nC) and calculated dose (Percentage Depth Dose, PDD) used CT image during radiation exposure with RTP. Results: The difference in mass density between the calculated tissue equivalent material and the true value was ranged from $0.005g/cm^3\;to\;0.069g/cm^3$. A relative error between PDD of RTP and calculated dose obtained by radiation therapy of machine ranged from -2.8 to +1.06%(effective range within 3%). Conclusion: In conclusion, we confirmed the effectiveness of correction for the inhomogeneous tissues through CT images. These results would be one of good information on the basic outline of Quality Assurance (QA) in RTP system.

  • PDF

폐암 세기변조방사선치료 시 최적화된 조사계획 설정과 가상 장기 설정에 관한 연구

  • Lee, Seok;Lee, Chang-Geol;Cho, Sam-Ju;Chu, Sung-Sil;Lee, Sang-Hoon;Choi, Myung-Sun;Kim, Chul-Yong
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.34-34
    • /
    • 2003
  • 목적 : 폐암 환자 세기변조방사선치료 과정을 소개하고, 방사선치료계획의 최적화를 위한 빔 수와 방향, 가상장기 설정 (virtual organ delineation, VOD) 및 선량 제한 인자들의 이용에 대해 평가함으로써 폐, 심장 등에 조사되는 선량을 최소화하는데 사용하는 세기변조방사선치료 (intensity modulated radiotherapy, IMRT) 기술의 유용성을 평가하고자한다. 대상 및 방법 : 종양이 종격동을 침범하여 상대적으로 장기움직임에 의한 오차가 적은 폐암환자 5 명을 대상으로 하였다. 환자고정장치는 상반신을 편안하게 유지함과 동시에 팔의 위치를 고정시킴으로써 기대할 수 있는 환자고정효과와 벨트를 이용하여 환자 상복부를 압박해줌으로써 호흡운동에 의한 장기 움직임을 감소시킬 수 있는 형태로 고안하였다. 치료계획시 빔 수와 방향은 5,7,9 문 (from 200 to 160, equispaced field, arbitrary field), 4 문 (anterior, posterior, bilateral posterior oblique field) 과 비등방 7, 9 문 (non-equispaced field, arbitrary field) 등을 사용하였다. 선량제한 ($V_{20}V_{25}$)은 문헌에 기초하여 설정하였으며, 가상장기를 적절히 사용하여 최적화된 치료계획 결과를 얻었다. 방사선치료계획 평가는 선량-체적간 히스토그람 (DVH), 등선량곡선 및 선량통계 등을 이용하여 수행하였다. 특히 가상장기 설정 전, 후의 결과 값을 분석함으로써 그 유용성을 확인하였다. 결과 : 9문 등방-IMRT와 7문 비등방-IMRT 방법이 치료계획용적의 선량균질성 (PTV dose homogeneity), 평균 폐선량 (mean lung dose) 및 $V_{20}V_{25}$ 모두에서 20% 이내의 좋은 결과를 얻을 수 있었고, 가상 장기를 설정함으로써 같은 결과를 가져옴을 알 수 있었다. 또한 폐암 세기변조방사선치료 프로토콜을 작성하여 임상에 사용함으로써 치료과정 중 발생할 수 있는 오류를 보완할 수 있음을 알 수 있었다. 결론 : 폐암 세기변조방사선치료 시 사용할 수 있는 프로토콜을 작성하였고, 적절한 가상 장기 및 조사계획 설정으로 치료계획의 최적화를 얻을 수 있음을 알 수 있었다.

  • PDF

방사선치료빔 실시간 측정장치 개발

  • Kim, Jae-Hong;Swanepoe, M.W.;deKock, E.A.;Park, Yeon-Su;Yang, Tae-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.288-288
    • /
    • 2010
  • 현대사회의 급속한 고령화로 암 환자의 수는 2002년 기준 약 10만 명에서 매년 7~10 %씩 증가되어 2012년에는 20만 명이 될 것으로 추정되어지고 있다. 수술, 방사선 치료, 약물요법 등이 주요 치료방법이며, 암 환자의 30-50 %가 전리 방사선치료를 받고 있다. 방사선치료는 19세기 말에 발견된 미지의 X-선이 희망의 방사선으로 변화하여 암의 진단 및 치료에 활용되고 있으며, 인간 삶의 질 향상에 핵심적인 역할을 담당하고 있다. 기존의 X-선이나 감마선의 단점을 극복 할 수 있는 입자 빔을 1970년대 미국의 캘리포니아 대학 Berkely National Laboratory에서 처음으로 암 치료에 적용하였다. 현재는 일본과 독일에서 활발하게 활용되고 있으며 국내에서도 입자 치료시설을 구축 또는 개발계획 중에 있다. 방사선치료의 완치율을 높이기 위해서는 정확한 선량을 암세포에 전달해야 한다. 환자에 전달되는 입자빔을 실시간으로 측정하는 기술이 연구되어지고 있다. 지금까지는 빔의 특성을 측정하기 위해 간섭적인 방법을 사용하였으나, 투과형 검출기를 개발하여 실시간으로 치료와 빔 특성을 동시에 수행하는 기술개발연구가 보고되고 있다. 본 연구에서는 Multileaf Faraday Cup (MLPC) 검출기 설계구조와 데이터 측정방법에 관한 연구를 수행하고자 한다. 빔의 전송 방향으로 3개층의 $4{\times}4$ 배열의 구조로 48 channel의 전류값을 측정하여 입자빔의 분포를 실시간으로 관측하고, 측정된 전류는 ADC를 거쳐 치료계획에 의해 선택된 영역의 SOBP를 유지하도록 range modulation propeller를 조절하는 feed-back system을 갖춘 방사선치료빔 실시간 측정장치 개발에 관한 결과를 보고하고자 한다.

  • PDF

Magnification Device of Computed Tomography in Radiation Therapy Planning (방사선치료계획을 위한 진단용 CT 영상의 확대장치)

  • Yoon, Sei-Chul;Kim, Jong-Woo;Bahk, Yong-Whee
    • Radiation Oncology Journal
    • /
    • v.4 no.2
    • /
    • pp.179-181
    • /
    • 1986
  • Computed tomography (CT) adds a new dimension in the study of body contour, organs, and tissues as well as various pathologic conditions. This modality provides a great degree of accuracy in radiation therapy Planning (RTP). However, CT images are usually taken on a small reduced format so that possible errors can be made during inputting the CT data into an automatic planner. Authors have designed a simple inexpensive magnifying device of CT images to obviate errors created by reduced image.

  • PDF

Development and Evaluation of Quality Assurance Worksheet for the Radiation Treatment Planning System (방사선치료계획 시스템의 정도관리 절차서 개발 및 유용성 평가)

  • Cho Kwang Hwan;Choi Jinho;Shin Dong Oh;Kwon Soo Il;Choi Doo Ho;Kim Yong Ho;Lee Sang Hoon
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.186-191
    • /
    • 2004
  • The periodic Quality Assurance (QA) of each radiation treatment related equipments is important one, but quality assurance of the radiation treatment planning system (RTPS) is still not sufficient rather than other related equipments in clinics. Therefore, this study will present and test the periodic QA program to compare, evaluation the efficiency of the treatment planning systems. This QA program is divided to terms for the input, output devices and dosimetric data and categorized to the weekly, monthly, yearly and non-periodically with respect to the job time, frequency of error, priority of importance. CT images of the water equivalent solid phantom with a heterogeneity condition are input into the RTPS to proceed the test. The actual measurement data are obtained by using the ion chamber for the 6 MV, 10 MV photon beam, then compared a calculation data with a measurement data to evaluate the accuracy of the RTPS. Most of results for the accuracy of geometry and beam data are agreed within the error criteria which is recommended from the various advanced country and related societies. This result can be applied to the periodic QA program to improve the treatment outcome as a proper model in Korea and used to evaluate the accuracy of the RTPS.

  • PDF