• Title/Summary/Keyword: 발화온도

Search Result 233, Processing Time 0.02 seconds

The Measurement of Autoignition Temperature for n-Propanol and Formic acid System (n-Propanol과 Formic acid계의 자연발화온도 측정)

  • Park, Sang-Hun;An, Jong-Il;Kim, Se-Ho;Park, Yoon-A;Choi, Jin-Young;Han, Jin-Seok;Oh, Su-Yong;Jang, Seon-Yeon;Ha, Dong-Myeong
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.164-164
    • /
    • 2013
  • 화학 관련 산업은 고온, 고압뿐만 아니라 반응성이 큰 물질들을 사용하는 복잡한 공정으로 이에 맞는 안전기술이 요구된다. 산업 현장에서 취급하고 있는 각종 화학물질의 안전관리를 어렵게 하는 이유는 취급하는 물질의 화재 및 폭발 특성치에 관한 자료가 부족하거나 정확하지 않은 연소 특성치를 사용하기 때문이다. 가연성물질의 연소현상 가운데 하나인 자연발화는 가연성 혼합기체에 열 등의 형태로 에너지가 주어졌을 때 스스로 타기 시작하는 산화현상으로, 주위로부터 충분한 에너지를 받아서 스스로 점화할 수 있는 최저온도를 최소자연발화온도(AIT : Auto ignition Temperature)라고 한다. 최소자연발화온도는 가연성 액체의 안전한 취급을 위해 중요한 지표가 된다. 순수물질의 최소자연발화온도를 문헌들에서 비교하면, 동일 물질인데도 불구하고 문헌에 따라 다른 최소자연발화온도가 제시되고 있다. 따라서 사업장에서 사고를 예방하기 위해서는 정확한 연소 특성 자료를 이용해야 해야 한다. 그러나 문헌에 제시된 대부분의 자료들은 과거 표준장치 및 자체 제작된 장치 등을 사용해서 얻은 결과이므로, 최근에 고안된 표준 장치를 이용한 결과가 매우 유용한 자료가 될 것으로 본다. 본 연구에서는 자연발화온도를 측정하는데 있어서 최근에 고안된 표준장치인 ASTM E659장치를 이용하여 n-Propanol과 Formic acid 혼합물의 최소자연발화 온도를 측정하였다. n-Propanol과 Formic acid 혼합물의 최소자연발화 온도는 화학 관련 산업 공정에서 매우 중요한 자료가 될 것이다.

  • PDF

Measurement and Prediction of Autoignition Temperature of n-Butanol+p-Xylene Mixture (노말부탄올과 파라자일렌 혼합물의 최소자연발화온도 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.1-8
    • /
    • 2016
  • The autoignition temperature (AIT) of a substance is the lowest temperature at which the vapor ignites spontaneously from the heat of the environment. The AIT is important index for the safe handling of flammable liquids which constitute the solvent mixtures in the process. This study measured the AITs of n-butanol+p-xylene mixture by using ASTM E659 apparatus. The AITs of n-butanol and p-xylene which constituted binary system were $340^{\circ}C$ and $557^{\circ}C$, respectively. The experimental AITs of n-butanol+p-xylene mixture were a good agreement with the calculated AITs by the proposed equations with a few A.A.D.(average absolute deviation).

Prediction of Autoignition Temperature of n-Decane and sec-Butanol Mixture (n-Decane과 sec-Butanol 혼합물의 최소자연발화온도의 예측)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.26 no.3
    • /
    • pp.85-90
    • /
    • 2012
  • The autoignition temperature (AIT) of a material is the lowest temperature at which the material will spontaneously ignite. The AIT is important index for the safe handling of flammable liquids which constitute the solvent mixtures. This study measured the AITs of n-Decane+sec-Butanol system by using ASTM E659 apparatus. The AITs of n-Decane and sec-Butanol which constituted binary system were $212^{\circ}C$ and $447^{\circ}C$, respectively. The experimental AITs of n-Decane+sec-Butanol system were a good agreement with the calculated AITs by the proposed equations with a few A.A.D. (average absolute deviation).

Measurement of Autoignition Temperature of Propionic Acid and 3-Hexanone System (Propionic acid와 3-Hexanone 계의 최소자연발화온도의 측정)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.28 no.4
    • /
    • pp.44-49
    • /
    • 2014
  • The autoignition temperaturs (AIT) of solvent mixture is important index for the safe handling of flammable liquids which constitute the solvent mixtures. This study measured the AIT and ignition delay time for Propionic acid and 3-Hexanone system by using ASTM E659 apparatus. The AITs of Propionic acid and 3-Hexanone which constituted binary system were $511^{\circ}C$ and $425^{\circ}C$, respectively. The experimental AIT of Propionic acid and 3-Hexanone system were a good agreement with the calculated AIT by the proposed equations with a few average absolute deviation (A.A.D.). And Propionic acid and 3-Hexanone system was shown the minimum autoignition temperature behavior (MAITB).

A Study on Measurements of Autoignition and Activation Energy of Superabsorbent Polymers (고흡수성 중합체의 자연발화와 활성화에너지 측정에 관한 연구)

  • Jong-Man Heo;Jae-Wook Choi
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.2
    • /
    • pp.292-304
    • /
    • 2023
  • Purpose: This study was conducted to obtain experimental data for the establishment of preventive measures against fire, as large and small fire accidents occur at production and storage sites of superabsorbent polymers developed for the convenience of daily life. Method: The sample container was fixed at 0.2m in both length and width, and was shaped into a rectangular cuboid with heights of 3cm, 5cm, 7cm, and 14cm to access an infinite flat plane. The sample container was fixed in the center of a thermostatic bath that was heated to a predetermined temperature according to a preset temperature control program. If the central temperature of the sample rose more than 20℃ above the set temperature, it was determined to have 'ignited', and if it remained similar to the set temperature, it was determined to have 'unignited'. Result: The critical autoignition temperature was calculated to be 212.5℃ for a sample container with a height of 3cm, 202.5℃ for 5cm, 192.5℃ for 7cm, and 177.5℃ for 14cm. The ignition induction time to reach the highest temperature was approximately 42hours for 3cm, 91hours for 5cm, 151hours for 7cm, and 300hours for 14cm. Conclusion:① As the size of the sample container increased, the autoignition temperature decreased and the ignition induction time to reach the highest temperature increased. ② The apparent activation energy was calculated to be 39.30kcal/mol, with a correlation of 99.5%.

Experimental Study on Autoignition of Superabsorbent Polymers (고흡수성 중합물질의 자연발화에 대한 실험적 연구)

  • Jong-Man Heo;Jae-Wook Choi
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.2
    • /
    • pp.280-291
    • /
    • 2023
  • Purpose: As fire accidents happen at the production and storage sites of superabsorbent polymers for convenience of daily life, an experimental study was conducted to secure basic data to establish practical preventive measures against them. Method: The sample container (20cm width × 20cm length) was made into a rectangular cuboid with the heights of 3cm, 5cm, 7cm, and 14cm, respectively, to allow access to the infinite flat plane. The front and back of the container were covered with a 300-mesh stainless steel mesh for one-dimensional heat transfer. The sample container was placed in the center of the thermostatic bath, which was heated to a predetermined temperature by setting the thermostat program in advance, and it was determined to be 'ignited' when the central temperature of the sample rose by more than 20℃ above the set temperature, and "unignited" when it was maintained at an approximate value of the set temperature. Result: The critical autoignition temperature was calculated to be 217.5℃ when the height of the sample container was 3 cm, 212.5℃ when it was 5 cm, 202.5℃ when it was 7cm, and 187.5℃ when it was 14cm. The ignition induction time to reach the maximum temperature was 34hours for 3cm, 76hours for 5cm, 143hours for 7cm, and 318hours for 14cm. Conclusion: ① As the size of the container increased, the autoignition temperature decreased and the induction time to reach the maximum temperature increased. ② An apparent activation energy was calculated to be 44.92kcal/mol, with a correlation of 96.93%.

The Measurement and Investigation of Fire and Explosion Properties for Cyclohexane (사이클로헥산의 화재 및 폭발 특성치의 측정 및 고찰)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.2
    • /
    • pp.75-81
    • /
    • 2011
  • For the safe handling of cyclohexane, the explosion limit at $25^{\circ}C$ and the temperature dependence of the explosion limits were investigated. Flash point and AIT(autoignition temperature) for cyclohexane were experimented. By using the literatures data, the lower and upper explosion limits of cyclohexane recommended 1.0 Vol% and 9.0 Vol%, respectively. Moreover lower flash points of cyclohexane recommended $-20^{\circ}C$. It was measured relationship between the AITs and the ignition delay times by using ASTM E659-78 apparatus for cyclohexane, and the experimental AIT was $255^{\circ}C$. The new equations for predicting the temperature dependence of the explosion limits of cyclohexane is proposed. The values calculated by the proposed equations were a good agreement with the literature data.

Prediction of Minimum Spontaneous Ignition Temperature(MSIT) of the Mixture of n-Pentanol and Ethylbenzene (n-Pentanol과 Ethylbenzene 혼합물의 최소자연발화온도의 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.2
    • /
    • pp.45-51
    • /
    • 2012
  • The MSITs(Minimum Spontaneous Ignition Temperatures) or AITs(Autoignition Temperatures) describe the minimum temperature to which a substance must be heated, without the application of a flame or spark, which will cause that substance to ignite. This study measured the MSITs(Minimum Spontaneous Ignition Temperatures) of n-pentanol+ethylbenzene system by using ASTM E659 apparatus. The MSITs of pure n-pentanol and ethylbenzene were $285^{\circ}C$ and $475^{\circ}C$, respectively. The experimental MSITs of n-pentanol+ethylbenzene system were a in good agreement with the MSIT calculated by the proposed equations with a few A.A.D.(average absolute deviation).

무 구속.구속 실험에 의한 환풍기 온도 및 발화 특성

  • Kim, Seong-Sam
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.186-187
    • /
    • 2013
  • 본 논문에서는 과부하, 과열에 의한 환풍기 동작 특성을 분석하기 위해 노후, 외부 이물질에 의한 날개의 강제 구속을 상정한 환풍기 내부 3개소의 온도 및 발화 특성을 실험적인 방법으로 분석하였다. 환풍기 신품 조건에서 날개 구속에 의한 실험 결과 온도퓨즈 용단으로 과열에 의한 변형이나 발화 위험의 징조는 발견하지 못하였으며 향후 노후 및 오염, 절연불량 등 추가적인 요인을 고려한 발화 위험의 실험이 필요하다고 사료된다.

  • PDF

Prediction of Autoignition Temperature of n-Propanol and n-Octane Mixture (n-Propanol과 n-Octane 혼합물의 최소자연발화온도의 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.2
    • /
    • pp.21-27
    • /
    • 2013
  • The lowest values of the AITs(Autoignition temperatures) in the literature were normally used fire and explosion protection. In this study, the AITs of n-Propanol+n-Octane system were measured from ignition delay time(time lag) by using ASTM E659 apparatus. The AITs of n-Propanol and n-Octane which constituted binary systems were $435^{\circ}C$ and $218^{\circ}C$, respectively. The experimental ignition delay time of n-Propanol+n-Octane system were a good agreement with the calculated ignition delay time by the proposed equations with a few A.A.D.(average absolute deviation).