• Title/Summary/Keyword: 발파정확도

Search Result 12, Processing Time 0.027 seconds

Field Practice Guidelines for Blasting Seismographs (발파진동측정을 위한 측정지침)

  • 선우춘
    • Explosives and Blasting
    • /
    • v.20 no.4
    • /
    • pp.29-37
    • /
    • 2002
  • 발파진동 및 소음은 일반적으로 발생원인이 사회간접자본의 건설이나 자원 의 개발이라는 공익성과 관련되는 것이 대부분이다. 최근에는 환경문제에 대한 관심이 높아지면서 발파진동이나 소음에 대한 관심이 높고, 또한 많은 민원이 발생되고 있다. 아무튼 발파진동의 측정은 발파에 의해 발생하는 지반 및 구조물의 진동을 파악하여 발파진동 규제기준의 수행 여부를 평가하거나 또는 발파성능을 평가할 목적으로 관련 기관들에 의해 진동측정이 실시되고 있다. 따라서 규정의 준수에 대한 판정은 발파소음과 지반진동 측정의 정확도와 신뢰도에 의존하게 된다. 그러나 발파진동측정에 대한 통일적인 방법이나 지침이 없기 때문에 현장실무에서 측정방법이나 자료처리방법 등에 많은 어려움이 따르고 있다. 따라서 ISEE의 발파진동측정을 위한 실무지침을 중심으로 진동계측자료가 신뢰성을 보장하기 위한 작업의 일환으로 발파진동 측정시 고려해야 할 사항들에 대해 고찰함으로써 발파진동 측정방법에 대한 이해를 높이고자 한다.

A Study to Estimate the Onset Time of an Impulsive Borehole Source (임펄시브형 시추공용 탄성파 송신신호 시작시간 측정에 관한 연구)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.2
    • /
    • pp.71-76
    • /
    • 2003
  • Accurate estimation of the first arrival travel time is an essential task to obtain a high resolution velocity tomogram. Accuracy of the travel time estimation may be influenced by two factors; geological and mechanical. A serious mechanical factor is the source firing control problems. We found the control problems in the records generated by tome impulsive borehole sources. The problems are; irregular firing control and uncertainty in estimation of the absolute firing-times shown in records. Definitely, the time difference will introduce an error to the first arrival times, and accordingly; it will cause some distortion in the resulting velocity tomogram. A method to determine the firing time is suggested here. The method determines the optimum onset time by comparing the horizontal and the NMO velocity with various amount of delay time adjustment.

Accuracy of Drone Based Stereophotogrammetry in Underground Environments (지하 환경에서의 드론 기반 입체사진측량기법의 정확도 분석)

  • Kim, Jineon;Kang, Il-Seok;Lee, Yong-Ki;Choi, Ji-won;Song, Jae-Joon
    • Explosives and Blasting
    • /
    • v.38 no.3
    • /
    • pp.1-14
    • /
    • 2020
  • Stereophotogrammetry can be used for accurate and fast investigation of over-break or under-break which may form during the blasting of underground space. When integrated with small unmanned aerial vehicles(UAVs) or drones, stereophotogrammetry can be performed much more efficiently. However, since previous research are mostly focused on surface environments, underground applications of drone-based stereophotogrammetry are limited and rare. In order to expand the use of drone-based stereophotogrammetry in underground environments, this study investigated a rock surface of a underground mine through drone-based stereophotogrammetry. The accuracy of the investigation was evaluated and analyzed, which proved the method to be accurate in underground environments. Also, recommendations were proposed for the image acquisition and matching conditions for accurate and efficient application of drone-based stereophotogrammetry in underground environments.

Analytic Hierarchy Process Analysis on Correlation Between Drilling Error and Blasting Accuracy (발파공의 천공오차와 발파정확도의 상관성에 관한 현장조사 및 계층분석기법 연구)

  • Lee, Deok-Hwan;Choi, Sung-Oong;Kim, Chang-Oh
    • Tunnel and Underground Space
    • /
    • v.24 no.5
    • /
    • pp.386-394
    • /
    • 2014
  • Drilling accuracy is known to be one of the most important factors determining blasting efficiency in mining by blast operation. Therefore analysing the causes of drilling error and preparing a countermeasure for minimizing drilling error are very important for blasting efficiency and safety. In this study, causes of drilling error are analyzed with dividing them into controllable factors and uncontrollable factors, and relationship between each cause is also comprehended through field measurement and AHP analysis. Finally, effective measures to help lower the drilling error are proposed with the results from weighting analysis for each factor.

A Study on Rock Fragmentation Image Analysis with Aerial Photo by UAV (항공촬영(UAV) 기법을 이용한 발파암 파쇄도 이미지 분석)

  • Kang, Dae-woo;Hur, Wonho;Lee, Ha-young
    • Explosives and Blasting
    • /
    • v.35 no.1
    • /
    • pp.18-26
    • /
    • 2017
  • In Analysis of Fragmentation of rock blasted, The photo analysis method has been mainly used and these image acquisitions are mainly obtained by digital image from the front of the crushed rock. However, Image analysis is basically advantage of the image of planar shooting not front shooting but There is no way to take a photograph of huge plane rock slope. Thus, Unavoidably It is resolved by distorting or extending the image filmed at the front as well as adjusting it similar to its angle of plane shooting. Lately, With advancing unmanned aerial vehicle, It can simply image the fragment conditions of blasted rock of a high-definition digital image and Through it, It can acquire the most planar image to angle which accumulate cataclastic rock and also can make image analysis. In this study, It has been confirmed that tolerance value of analysis result of image filmed flatly is markedly lower than the existing front filmed image.

Study on Preliminary Influence Analysis of Construction Noise and Vibration (건설 소음.진동의 사전 영향성 분석에 관한 연구)

  • Ahn, Myung-Seok;Kim, Hwa-Il;Park, Ju-Han
    • Explosives and Blasting
    • /
    • v.32 no.2
    • /
    • pp.25-30
    • /
    • 2014
  • Although the construction noise and vibration are transient and intermittent, their impact on the surrounding environment is huge. Since the construction equipment noise and vibration is usually transmitted because of the long distance, the sound insulation and the proper design of anti-vibration measures are very difficult. The regulation requires that the noise and vibration caused by the construction equipments should be measured within 30m from the source, whereas the blasting noise and vibration should be measured at least 60m and 160m away from the source, respectively. Instead of the 2D modelling mainly conducted so far, the 3D analysis of noise and vibration with the consideration of the height and size of the building, mountains and hills in the vicinity of the source is necessary.

A Study on the Drilling Methods to reduce Overbreak in Tunnel Blasting (터널발파 작업시 여굴 저감을 위한 천공방법 연구)

  • 김양균;김형철;유정훈
    • Explosives and Blasting
    • /
    • v.21 no.2
    • /
    • pp.1-13
    • /
    • 2003
  • Overbreak or underbreak is one of the most important factors in evaluating the results of a tunnel blasting. Overbreak, which depends on the quality of rock, the type and quantity of explosives, and drilling conditions, has been a target of challenge to many blasting engineers because it directly affects construction cost. Drilling is generally known as one of the primary factors to generate overbreak. This study presents a real working model to reduce overbreak based on the analysis of drilling accuracy and overbreak generated from various working methods related to drilling. As the first step of the study, 45 experiments have been performed. The factors investigated are: marking contour line, the position of perimeter holes, the change of look-out with drilling rig position, and the proper space between perimeter holes. It is concluded that workers and engineers' will and efforts are the most important factors to reduce overbreak and that improving drilling method and pattern could reduce overbreak to a considerable amount.

A new method for determining OBS positions for crustal structure studies, using airgun shots and precise bathymetric data (지각구조 연구에서 에어건 발파와 정밀 수심 자료를 이용한 OBS 위치 결정의 새로운 방법)

  • Oshida, Atsushi;Kubota, Ryuji;Nishiyama, Eiichiro;Ando, Jun;Kasahara, Junzo;Nishizawa, Azusa;Kaneda, Kentaro
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.15-25
    • /
    • 2008
  • Ocean-bottom seismometer (OBS) positions are one of the key parameters in an OBS-airgun seismic survey for crustal structure study. To improve the quality of these parameters, we have developed a new method of determining OBS positions, using airgun shot data and bathymetric data in addition to available distance measurements by acoustic transponders. The traveltimes of direct water waves emitted by airgun shots and recorded by OBSs are used as important information for determining OBS locations, in cases where there are few acoustic transponder data (<3 sites). The new method consists of two steps. A global search is performed as the first step, to find nodes of the bathymetric grid that are the closest to explaining the observed direct water-wave traveltimes from airgun shots, and acoustic ranging using a transponder system. The use of precise 2D bathymetric data is most important if the bottom topography near the OBS is extremely rough. The locations of the nodes obtained by the first step are used as initial values for the second step, to avoid falling into local convergence minima. In the second step, a non-linear inverse method is executed. If the OBS internal clock shows large drift, a secondary correction for the OBS internal clock is obtained, as well as the OBS location, as final results by this method. We discuss the error and the influence of each measurement used in the determination of OBS location.

A Study on Precision Measurement of Rock Joint Using 3D-Laser Scanner (3D-Laser scanner를 이용한 암반 절리의 정밀측정에 관한 연구)

  • 이승호;황영철;김세현;심석래;정태영
    • Explosives and Blasting
    • /
    • v.22 no.3
    • /
    • pp.103-111
    • /
    • 2004
  • The existing methods that can be adopted for measuring joints involve either to use borehole or photogrammetry. Due to restricted space, acquisition of data in limited area, and measurement errors, above methods have limitations acquiring the objective and correct results. To get over defects of existing joint measurement methods, joints have been measured using 3D-Laser scanner with accuracy and efficiency. This research aims to investigate an accuracy and applicabiliy of 3D-Laser scanner for measuring rock slope joints. Measurement of rock slope joints has been executed using 3D-Laser scanner & clinometer and then, results from both methods are compared. Results from both methods indicate that they show nearly equal features for joint distributions and numbers of joint information obtained by 3D-Laser scanner are much more than ones measured using clinomer. Therefore, 3D-Laser scanner turns out to be very effective by the fact that it contributes to reduce investigation costs & periods, objectify data from rock slope joints.

An Analysis of Artificial Intelligence Algorithms Applied to Rock Engineering (암반공학분야에 적용된 인공지능 알고리즘 분석)

  • Kim, Yangkyun
    • Tunnel and Underground Space
    • /
    • v.31 no.1
    • /
    • pp.25-40
    • /
    • 2021
  • As the era of Industry 4.0 arrives, the researches using artificial intelligence in the field of rock engineering as well have increased. For a better understanding and availability of AI, this paper analyzed the types of algorithms and how to apply them to the research papers where AI is applied among domestic and international studies related to tunnels, blasting and mines that are major objects in which rock engineering techniques are applied. The analysis results show that the main specific fields in which AI is applied are rock mass classification and prediction of TBM advance rate as well as geological condition ahead of TBM in a tunnel field, prediction of fragmentation and flyrock in a blasting field, and the evaluation of subsidence risk in abandoned mines. Of various AI algorithms, an artificial neural network is overwhelmingly applied among investigated fields. To enhance the credibility and accuracy of a study result, an accurate and thorough understanding on AI algorithms that a researcher wants to use is essential, and it is expected that to solve various problems in the rock engineering fields which have difficulty in approaching or analyzing at present, research ideas using not only machine learning but also deep learning such as CNN or RNN will increase.