• Title/Summary/Keyword: 발전기 냉각

Search Result 44, Processing Time 0.027 seconds

Application Study of An On-site Hydrogen Production System for Power Generator Cooling (발전기 냉각용 On-Site 수소 생산 시스템 적용연구)

  • Moon, Jeon-Soo;Lee, Jae-Kun;Park, Pyl-Yang;Park, Kyoung-Il
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.5
    • /
    • pp.410-415
    • /
    • 2009
  • A hydrogen cooling method is used in a power generator for removing the unnecessary heat due to the windage loss of a rotor and the joule heat of a stator. A MEA (Membrane Electrolyte Assembly) hydrogen generator has been developed and applied as a hydrogen supplying system for the cooling of a 350MW power generator. As a field application result, the average potential of eleven cells and the voltage efficiency were measured 2.26V/cell and 65.4% (Higher Heating Value) respectively at the hydrogen pressure of 6 Bar, the hydrogen flow rate of 9.1L/min, and the current of 150A.

An Experimental Study on the Dryness Judgement Criterion for Water-cooled Generator Stator Windings (수냉각 발전기 고정자의 권선 내부 건조 판정 기준 설정에 관한 실험적 연구)

  • Kim, Hee-Soo;Bae, Yong-Chae;Lee, Wook-Ryun;Lee, Doo-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.137-143
    • /
    • 2010
  • Complete dryness inside the stator is a necessary and sufficient condition for the leak test. Microcracks caused by high cycle fatigue due to operation are generated in stator windings, and they are interrupted by water molecules during the leak test. For this reason, during leak test, the wrong value is indicated when there are no leaks in stator windings. Generator manufacturers presents unique dryness judgment criteria for the leak test, but there is no actual criterion that accurately indicates the dryness point for the leak test. The reason is because stator winding has a complex structure and the absence of effective dryness equipment in power plants. This paper proposes a dryness judgment criterion to evaluate if inside the stator winding is dried completely and presents experimental results.

Numerical analysis for development of vehicle engine room cooling hood (차량 엔진룸 냉각용 후드 개발을 위한 수치해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.92-97
    • /
    • 2018
  • This study deals with the numerical analysis for hood development to improve the cooling effect of the engine related components in engine room. Reducing the component temperature in engine room caused by a sudden temperature deviation can minimize the durability degradation of components. Therefore, in this study, numerical analysis for the development of the hood in engine room was carried out in four parts such as generator, battery, ECU and power steel oil which are relatively easy to control temperature among the main components in engine room. In order to verify the numerical analysis, experiments were conducted under the same conditions as those assumed in the numerical analysis.

Design of Retarder Control Logic for Cooling System of Commercial Vehicle (상용차의 냉각 시스템을 고려한 리타더 제어로직 설계)

  • Lee, Chang-Kyu;Jeong, Jong-Kyu;Kim, Gwan-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.668-669
    • /
    • 2016
  • The retarder as a hydraulic brake system in order to assist a service brakes in commercial vehicle is operated by automatic and manual mode due to driver. Braking energy by retarder operation is transmitted to the engine radiator of vehicle cooling system, passing through the retarder oil heat exchanger. At this moment, the retarder ECU performs the function that is controlled a braking torque with consideration for automatic and manual mode, temperature of retarder oil/water, engine coolant temperature, vehicle speed, and etc. In this paper, it deals with the design of retarder control logic and the results of retarder braking performance test regarding a cooling system of retarder and vehicle.

  • PDF

Flow Analysis for Design Modification of Marine Generator Fan (박용 발전기 냉각 팬 설계변경에 따른 유동해석)

  • Kim, Hong-Won;Seol, Sin-Su;Ha, Ji-Soo;Kim, Jin-O
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.840-844
    • /
    • 2003
  • A study for increase of fan flow rate by geometric modification has been conducted to decrease temperature rise of marine generator inner part. Through experiment of a real product, a performance curve for various flow resistances was obtained. Flow analyses for each cases were done by using commercial code-FLUENT and the results were very similar to experimental data (0.7% deviation at normal operating condition). Through flow analysis results for various design geometric modification, a scroll type fan was adopted as a best design geometry with 100Pa more pressure and 22% more flow rate than original fan.

  • PDF

A analysis of cooling system for generator according to ventilation path (유로 형상에 따른 선박용 발전기의 냉각 통풍 해석)

  • Lee, D.J.;Lim, Nam-Hyuk;Seol, S.S.;Kim, J.O.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1250-1254
    • /
    • 2004
  • To develop more compact and light generators which have high capacity, the most important thing that should be considered is the inner cooling system. Under all circumstances, the temperature of rotor and stator windings must be kept below the maximum temperature of insulation to maintain reliability and prolong durability of the machine. Therefore, the development of more effective cooling system and the exact prediction of windings are essential to produce our unique generator model which is reliable and competitive in international market. In this study, the flow of cooling air and the temperature distribution of winding is analyzed by using computational fluid dynamics. This analysis can lead to optimize the structure of cooling system and predict a local temperature rise.

  • PDF

Geometric Thermoelectric Generator Leg Shape Design for Efficient Waste Heat Recovery (효율적인 폐열 회수를 위한 기하학적 열전소자 다리 설계)

  • Hyeon-Woo Kang;Jung-Hoe Kim;Young-Ki Cho;Won-Seok Choi;Hyun-Ji Lee;Hun-Kee Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.589-602
    • /
    • 2024
  • Thermoelectric generator (TEG) generally do not have high heat conversion efficiencies. The performance of a thermoelectric generator module depends on the shape of the legs as well as the properties of the material and the number of legs. In this study, the leg shapes of thermoelectric elements are modeled into various geometric structures such as cylinder and cube shaped to efficiently harvest waste heat, and the electrical characteristics are compared numerically. The temperature gradient and power generation according to the bridge shape are found to be highest at the existing Cube shape. As a result of comparing the power generation using the cooling effect, the Cone shape was the highest in natural convection and the Hourglass shape was highest in forced convection. Research results confirm that geometry can affect the efficiency of thermoelectric generators.

Experimental Study on Thermal Insulation and Cooling for Rotor/Bearing Area in 500W Class Micro Gas Turbine Generator (500W급 마이크로 가스터빈 발전기 회전체-베어링부의 단열 및 냉각 성능에 대한 실험적 연구)

  • Park, Cheol Hoon;Choi, Sang Kyu;Ham, Sang Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.3
    • /
    • pp.19-24
    • /
    • 2014
  • Development of long-term mobile energy sources for mobile robots or small-sized unmanned vehicles are actively increasing. The micro gas turbine generator (MTG) is a good candidate for this purpose because it has both of high energy density and high power density, and 500W class MTG is under development. The designed MTG can be divided into 2 main parts. One part consists of motor/ generator and compressor, and the other one consists of combustor, recuperator and turbine. 500W class MTG is designed to operate at ultra-high speed of 400,000 rpm in high turbine temperature over $700^{\circ}C$ to improve the efficiency. Because the magnetism of NdFeB permanent magnet for the motor/generator could be degraded if the temperature is over $150-200^{\circ}C$, MTG needs the thermal insulation to block the heat transfer from combustor/turbine side to motor/generator side. Moreover, the motor/generator is allocated to get the cooling effect from the rapid air flow by the compressor. This study presents the experimental results to verify whether the thermal insulator and air flow are effective enough to keep the motor/generator part in the low temperature less than $100^{\circ}C$. From the motoring test by using the high temperature test rig, it was confirmed that the motor/generator part could maintain the temperature less than $50^{\circ}C$ under the condition of 1.0 bar compressed air.

A Study on the safety measures for the protection of hydrogen cooling system of generator (수소를 냉각매체로 하는 발전기 안전대책에 관한 연구)

  • Lee Choon-Ha;Yuk Hyun-Dai
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.4 s.25
    • /
    • pp.55-61
    • /
    • 2004
  • This paper provided a counter measures against the troubles and accidents that are likely to take place in the power plant using hydrogen gas as a coolant for the cooling system of the generator. Because of the extremely wide flammability limits of hydrogen in comparison to the other flammable gases, the safety measures against the hydrogen accidents is very important to ensure the normal operation of electric-power facility. This study's purpose was a presentation of standard model of safety management of hydrogen equipments in the coal firing power plant such as following items: 1) providing the technical prevention manual of the hydrogen explosions and hydrogen fires occurring in the cooling system of power generator; 2) the selection of explosion-proof equipments in terms of the risk level of operating environment; 3) the establishment of regulations and counter measures, such as the incorporation of gas leakage alarm device, for preventing the accidents from arising, 4) the establishment of safety management system to ensure the normal operation of the power plant.

  • PDF

Mechanical Properties of Mica/Epoxy Composite Materials used in Genrator Stator Windings (발전기 고정자 권선에 사용되는 마이카/에폭시 복합재료의 기계적 특성에 관한 연구)

  • 김희동;김희곤;김태완;강도열
    • Electrical & Electronic Materials
    • /
    • v.10 no.4
    • /
    • pp.327-333
    • /
    • 1997
  • Experiments on mechanical fatigue were conducted using the specimens which were cut from hydrogen cooled generator(rated 22kV and 50OMW) stator windings. We have investigated the aged mechanism of mica/epoxy insulation systems under air or hydrogen by both the tensile and compressive loadings. The fracture of generator stator windings is generally affected by mechanical stress. Thus, the tensile strength test were conducted. In this case, the maximum strength and strain are quite different between sound and aged specimens. It is observed that low bonded interface parts of tapes generally have lower strength than those of normal tapes which causes stress. In order to estimate the effects of cyclic load by the electromagnetic forces while the generator starts/stops, the mechanical fatigue test was also conducted. It is confirmed that the equation of expected life depends on stress amplitude and number of cycles. Though the stress amplitude and number of cycles are very tiny, the tensile fatigue of aged specimens under hydrogen atmosphere is bigger than those under air. In the case of hydrogen atmosphere, the tensile stress gives bigger effect than the compressive one.

  • PDF