• Title/Summary/Keyword: 발생학습전략

Search Result 117, Processing Time 0.03 seconds

The Study of Pressure Measurement by Difference of ANFIS prediction on individual Option. (ANFIS 예측값을 활용한 개별 옵션 압력 측정 방법에 대한 연구)

  • Ko, Young-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.436-438
    • /
    • 2017
  • 자본주의의 꽃인 주식시장은 파생시장에 의해 영향을 받고 있으며, 파생시장은 지수옵션 상품에 의해 영향을 받고 있다. 최근 들어 시스템 트레이딩에 대한 관심이 점점 더해가고 있으며 투자자에게 컴퓨터 시스템과 매매 전략에 대한 이해를 요구하고 있다. 지수옵션 시장은 만기일을 기준으로 마치 파도와 같이 순간순간 살아 움직이고 있다. 옵션에 대한 효과적인 관점은 투자자에게 확률 높은 매력적인 전략을 제공하며 옵션의 움직임을 전체적으로 해석할 수 있게 한다, 그리고 궁극적으로 옵션가의 예측을 가능하게 한다. 행사가와 방향성에 의한 개별 옵션은 함수로 해석될 수 있다. 다양한 입력값에 의해 가격이라는 하나의 출력값이 결정되는 구조이다. 입력값에는 지수, 시간, 거래량 의 세가지 카테고리로 이루어진다. 이중 거래량은 예측이 가능한데, 개별 옵션이 아닌 앙상불의 경우 출력값으로 처리될 수 있다. 하지만 앙상불 옵션에서 개별 옵션가는 경직성을 가지게 되어 예상가의 차이에 의한 압력이 발생하게 된다. 이 압력은 이후의 지수변화에 핵심적인 에너지로 작용할 수 있다. 압력의 측정은 다양한 방법이 있을 수 있는데, 본 논문에서는 뉴로-퍼지 시스템을 이용한 예측값과의 차이를 측정하여 계산하였다. 일단 학습된 뉴로-퍼지 시스템은 가격을 예측하게 되며, 실제 가격과의 괴리는 압력으로 해석할 수 있다.

The Strategic Plan of the Nutrition Education Intervention for Improving Nutritional Status and Reducing Nutrition-Related Diseases (한국 성인의 영양개선과 영양관련 질병의 감소를 위한 영양교육 계획)

  • 박동연
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.2
    • /
    • pp.154-160
    • /
    • 1993
  • The strategic plan of nutrition education intervention was established to improve nutritional status and reduce nutrition-related diseases for Korean adults. Nutritional problems and risk factors of the nutrition-related diseases were identified to set the long-term goal and objectives for the intervention. The social learning theory and theory of diffusion of innovation served as theoretical basis for this plan. Mass media and interpersonal channels were used to educate the whole adult population and specific target groups. The outline of the educational contents was developed for the whole adult population and slightly modified according to characteristics of the target groups. This plan can serve as a guideline for the operational plans for the future nutrition education intervention.

  • PDF

A Case Study on the Learning Organization Plan as Foundation of Knowledge Management Introduction in the Construction Companies - Focus on changes in IIAC(Incheon International Airport Corporation) Organization - (건설업 지식경영 도입 기반으로서 학습조직 구축방안 - IIAC(인천국제공항공사) 조직변화 사례적용 -)

  • Hwang In-Bae;Kim Kyung-Rai
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.363-368
    • /
    • 2001
  • Nowadays, the domestic construction markets are more competitive and the construction companies are very difficult to obtain profits. To overcome this situation, some construction companies are looking for value added business areas. To create and enter into the value added business areas, knowledge management to create, share and apply knowledge is important. However, the existing knowledge management has problems because it does not consider organizational culture. Therefore, strategic changes of person and organization are needed to improve the existing knowledge management. In this study, learning organization plan is suggested as a foundation of knowledge management in the construction companies and examined by IIAC(Incheon International Airport Corporation) case.

  • PDF

Data Preprocessing for Predicting Sarcopenia Based on Machine Learning (기계학습 기반 근감소증 예측을 위한 데이터 전처리 기법)

  • Yoon Choi;Yourim Yoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.737-744
    • /
    • 2023
  • Sarcopenia is an increasingly common disease among the elder that has recently received attention. Although the causes of sarcopenia are diverse, aging, dietary habits, lack of exercise are the one of the major factors. As the causes of sarcopenia are diverse, it is important to develop strategies for prevention and treatment. However, predicting sarcopnia accuartely is difficult due to the variety of factors involved. Here, machine learning can significantly improve the accuracy and convenience of predicting sarcopenia. However, since lifestyle habits and biological data are vast, using data without preprocessing may be inappropriate in terms of time complexity and accuracy. This paper reviews recent literature on sarcopnia and its causes, focusing on preprocessing the data to be used in sarcopnia prediction machine learning accrodingly.

Research on Optimization Strategies for Random Forest Algorithms in Federated Learning Environments (연합 학습 환경에서의 랜덤 포레스트 알고리즘 최적화 전략 연구)

  • InSeo Song;KangYoon Lee
    • The Journal of Bigdata
    • /
    • v.9 no.1
    • /
    • pp.101-113
    • /
    • 2024
  • Federated learning has garnered attention as an efficient method for training machine learning models in a distributed environment while maintaining data privacy and security. This study proposes a novel FedRFBagging algorithm to optimize the performance of random forest models in such federated learning environments. By dynamically adjusting the trees of local random forest models based on client-specific data characteristics, the proposed approach reduces communication costs and achieves high prediction accuracy even in environments with numerous clients. This method adapts to various data conditions, significantly enhancing model stability and training speed. While random forest models consist of multiple decision trees, transmitting all trees to the server in a federated learning environment results in exponentially increasing communication overhead, making their use impractical. Additionally, differences in data distribution among clients can lead to quality imbalances in the trees. To address this, the FedRFBagging algorithm selects only the highest-performing trees from each client for transmission to the server, which then reselects trees based on impurity values to construct the optimal global model. This reduces communication overhead and maintains high prediction performance across diverse data distributions. Although the global model reflects data from various clients, the data characteristics of each client may differ. To compensate for this, clients further train additional trees on the global model to perform local optimizations tailored to their data. This improves the overall model's prediction accuracy and adapts to changing data distributions. Our study demonstrates that the FedRFBagging algorithm effectively addresses the communication cost and performance issues associated with random forest models in federated learning environments, suggesting its applicability in such settings.

Game Based Online Contents Development in Middle School Mathematics (중학교 수학교과의 온라인 게임형 콘텐츠 개발)

  • Cho, Eun-Soon;Kim, In-Sook
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.9
    • /
    • pp.248-256
    • /
    • 2007
  • The purpose of this study is to design, develope, and deploy of online game content in middle school mathematics. This study analyzed related literature review, case studies, and educational game web sites for seeking better applicable design strategies. After serious discussion with experts based the design ideas, this study established its own educational game design model and it was applied to develop algebraic function lesson for middle school students. The developed content also was deployed in real classroom setting to see how students received the game contents and how. well they processed the design procedures and activities. We found that educational online game content, especially when applied to mathematics subject, can be effective in students interests and their motivations. We also observed that there were a few managerial errors such as need for detailed guidance for game, cumulative game results for later feedback, and so on. This study concluded that educational game contents should be able to widely spread out to get students' learning interests and strong motivation as well. We suggest that related research should be done toward to other subject than mathmatics and various students age groups.

Automatic Clustering Agent using PCA and SOM (PCA와 SOM을 이용한 자동 군집화 에이전트)

  • 박정은;김병진;오경환
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.67-70
    • /
    • 2003
  • 인터넷의 정보 홍수 속에서 원하는 정보를 정확하게 제시간에 얻기란 쉬운 일이 아니며, 따라서 이러한 작업을 대신해주는 에이전트의 역할이 점점 커지고 있다. 대부분의 이벤트들이 실시간에 발생되고 처리되어야 하는 인터넷 환경에서는 분석가가 군집화의 방법과 결과 해석에 지속적으로 관여하기 어렵기 때문에 이러한 분석가의 업무를 대신하는 지능화된 에이전트가 필요하게 된다. 본 논문에서는 특히 자율학습 군집화에 대한 자동화된 시스템으로서 자동 군집화 에이전트를 제안하며 이 시스템은 군집화 수행 에이전트와 군집화 성능 평가 에이전트로 이루어져 있다. 두 개의 에이전트가 서로 정보를 교환하면서 자동적으로 최적의 군집화를 수행한다. 군집화 과정에서는 데이터를 분석하는 분석가가 군집화의 방법과 결과 해석에 실시간으로 관여하기 어렵기 때문에 이러한 작업을 담당하는 지능화된 에이전트가 자동화된 군집화를 담당하면 효과적인 군집화 전략이 될 수 있다. 또한 UCI Machine Repository의 IRIS 데이터와 Microsoft Web Log Data를 이용한 실험을 통해 제안 시스템의 성능 평가를 수행하였다.

  • PDF

An Empirical Study on The Pattern of Interactive Learning in Strategic Networks (전략네트워크에서 발생하는 학습패턴에 관한 실증연구)

  • Jeong, Jong-Sik;Kim, Hyun-Jee
    • International Commerce and Information Review
    • /
    • v.9 no.4
    • /
    • pp.3-19
    • /
    • 2007
  • The purpose of this paper is to study the pattern of interactive learning in strategic networks. Interactive learning is defined as the exchange and sharing of knowledge resources conducive to innovation between an innovator firm, its suppliers, and/or its customers. The strength of internal knowledge resources can either hamper or facilitate levels of interactive learning. We assume that more complex innovative activities urge firms to co-ordinate and exchange information between users and producers, which implies a higher level of interactive learning. To test our theoretical claims, we estimated the level of interactive learning of firms in strategic networks with: (1) their customers, (2) their suppliers. Theses analyses allow a comparison of the antecedents of interactive learning of firms participating in strategic networks. Our findings suggest that interactive learning with customers is positively affected by company's capabilities and value-created activities, and with supplies is positively affected by value-created activities and technology innovation centers.

  • PDF

Factors of Interest in Computer Game (컴퓨터 게임에서의 흥미 관련 요인)

  • 김세영;한광희
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.05a
    • /
    • pp.209-213
    • /
    • 2000
  • 흥미는 학습을 비롯한 여러 인지 과제 수행에 있어서 중요한 변인이 된다. 그러나 그 개념의 모호성이나 측정 가능성에 대한 문제 등으로 인해서 이에 대한 직접적인 연구가 부족한 것이 현실이다. 본 연구에서는 컴퓨터 게임의 상황에서 발생하는 흥미와 관련된 변인으로서 주관적 시간 지각과 flow 경험에 대한 설문을 통해서 흥미관련요인을 알아보고자 하였다. 게임에서의 흥미의 경험이 실제 시간보다 짧은 주관적 시간 지각의 왜곡으로 나타날 것이며 flow와 관계된 요인들이 결국 흥미 유발에 유의한 관련성이 있을 것이라고 기대되었다. 결과에 따르면 주관적 시간 지각이 흥미의 정도에 따라 차이가 있는 것으로 나타났으며, 도전감, 주의, 시간 왜곡감, 기술, 각성 등의 변인도 흥미와 관련된 것으로 나타났다. 또한 네트웍과 개인 조건에 따른 흥미와 시간의 왜곡감, 전략, 시간 지각의 차이도 역시 유의하였다.

  • PDF

Metaverse platform-based flipped learning framework development and application (메타버스 플랫폼 기반 플립러닝 프레임워크 개발 및 적용)

  • Ko, Hyunjoo;Jeon, Jaecheon;Yoo, Inhwan
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.2
    • /
    • pp.129-140
    • /
    • 2022
  • Our society is undergoing rapid changes due to COVID-19, and in particular, online learning using digital technology is being tried in various forms in the educational field. A change has occurred. However, the limitations of distance learning, such as reduced learning immersion in non-face-to-face educational situations, lack of interaction between teachers and learners, and lower basic academic ability, are constantly being raised, and an appropriate educational strategy is needed to solve these problems. This study focused on the concept of 'Metaverse' based on the interaction between the virtual world and the real world, and tried to verify the effectiveness of educational activities based on it. In detail, we propose an educational framework for realizing flipped learning in the Metaverse Virtual Classroom, and a frame developed by measuring the learning immersion of a single group with a teaching/learning program developed based on this. The effectiveness of the work was verified. When the metaverse platform-based flip learning framework and education program proposed in this study were applied, it was confirmed that learners' immersion in learning was improved.