DOI QR코드

DOI QR Code

Data Preprocessing for Predicting Sarcopenia Based on Machine Learning

기계학습 기반 근감소증 예측을 위한 데이터 전처리 기법

  • 최윤 (가천대학교 컴퓨터공학과 ) ;
  • 윤유림 (가천대학교 컴퓨터공학과)
  • Received : 2023.03.30
  • Accepted : 2023.05.08
  • Published : 2023.05.31

Abstract

Sarcopenia is an increasingly common disease among the elder that has recently received attention. Although the causes of sarcopenia are diverse, aging, dietary habits, lack of exercise are the one of the major factors. As the causes of sarcopenia are diverse, it is important to develop strategies for prevention and treatment. However, predicting sarcopnia accuartely is difficult due to the variety of factors involved. Here, machine learning can significantly improve the accuracy and convenience of predicting sarcopenia. However, since lifestyle habits and biological data are vast, using data without preprocessing may be inappropriate in terms of time complexity and accuracy. This paper reviews recent literature on sarcopnia and its causes, focusing on preprocessing the data to be used in sarcopnia prediction machine learning accrodingly.

근감소증은 노인들 사이에서 점점 더 흔하게 발생하고 있어, 최근 주목을 받고 있는 질병이다. 근감소증의 원인은 매우 다양하게 나타나지만, 노화, 식습관, 운동 부족등이 주요한 원인들 중 하나이다. 근감소증은 원인이 다양한 만큼 예방 및 치료에 전략을 개발하는 것이 중요하다. 하지만 요인이 다양한 만큼 사람이 근감소증을 정확하게 예측하기는 어렵다. 여기서 기계학습을 이용해 근감소증 예측의 정확도와 편의를 크게 높일 수 있다. 그러나 생활습관과 생체 데이터의 양은 방대한 만큼, 전처리 없이 데이터를 쓰기에는 시간복잡도와 정확성 측면에서 부적절할 수 있다. 본 논문에서는 근감소증과 그 원인에 대한 최신 문헌을 검토하고, 그에 맞게 기계학습 기만 근감소증 예측에 활용할 데이터를 전처리하는데 초점을 맞춘다.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부, 교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.2022R1F1A1066017, NRF-2022S1A5C2A07090938)

References

  1. Santilli V, Bernetti A, Mangone M, Paoloni M. Clinical definition of sarcopenia. Clin Cases Miner Bone Metab. 2014 Sep;11(3):177-80. PMID: 25568649; PMCID: PMC4269139.
  2. Hong S, Choi WH. Clinical and physiopathological mechanism of sarcopenia. Korean J Med. 2012;83:444-54. doi: 10.3904/kjm.2012.83.4.444.
  3. Chen LK, Woo J, Assantachai P, Auyeung TW, Chou MY, Iijima K, Jang HC, Kang L, Kim M, Kim S, Kojima T, Kuzuya M, Lee JSW, Lee SY, Lee WJ, Lee Y, Liang CK, Lim JY, Lim WS, Peng LN, Sugimoto K, Tanaka T, Won CW, Yamada M, Zhang T, Akishita M, Arai H. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J Am Med Dir Assoc. 2020 Mar;21(3):300-307.e2. doi: 10.1016/j.jamda.2019.12.012. Epub 2020 Feb 4
  4. Albano, D.; Messina, C.; Vitale, J.; Sconfienza, L.M. Imaging of sarcopenia: Old evidence and new insights. Eur. Radiol. 2020, 30, 2199-2208, DOI : https://doi.org/10.1007/s00330-019-06573-2
  5. Kim YJ. Machine Learning Models for Sarcopenia Identification Based on Radiomic Features of Muscles in Computed Tomography. International Journal of Environmental Research and Public Health. 2021; 18(16):8710. https://doi.org/10.3390/ijerph18168710
  6. Kang YJ, Yoo JI, Ha YC. Sarcopenia feature selection and risk prediction using machine learning: A cross-sectional study. Medicine (Baltimore). 2019 Oct;98(43):e17699. doi:10.1097/MD.0000000000017699.
  7. Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P. Trevino, Jiliang Tang, and Huan Liu. 2017. Feature Selection: A Data Perspective. ACM Comput. Surv. 50, 6, Article 94 (November 2018), 45 pages. DOI :https://doi.org/10.1145/3136625
  8. Xue Ying 2019 J. Phys.: Conf. Ser. 1168,022022, DOI : 10.1088/1742-6596/1168/2/022022
  9. https://knhanes.kdca.go.kr/knhanes/sub03/sub03_02_05.do
  10. https://survey.keis.or.kr/klosa/klosa04.jsp
  11. Chen LK, Woo J, Assantachai P, Auyeung TW, Chou MY, Iijima K, Jang HC, Kang L, Kim M, Kim S, Kojima T, Kuzuya M, Lee JSW, Lee SY, Lee WJ, Lee Y, Liang CK, Lim JY, Lim WS, Peng LN, Sugimoto K, Tanaka T, Won CW, Yamada M, Zhang T, Akishita M, Arai H. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc 2020;21:300-307. e2 , DOI : DOI:https://doi.org/10.1016/j.jamda.2019.12.012
  12. WON, Chang Won. Diagnosis of sarcopenia in primary health care. J. Korean Med. Assoc, 2020, 63: 633-641. DOI : http://dx.doi.org/10.5124/jkma.2020.63.10.633
  13. S. Cessie, J. C. Houwelingen, Ridge Estimators in Logistic Regression, Journal of the Royal Statistical Society Series C: Applied Statistics, Volume 41, Issue 1, March 1992, Pages 191-201, https://doi.org/10.2307/2347628