• Title/Summary/Keyword: 발사 충격

Search Result 150, Processing Time 0.025 seconds

Performance evaluation on the separation device activated by shape memory alloy actuator (형상기억합금을 이용한 소형 위성용 분리장치의 성능평가)

  • Choi, Junwoo;Lee, Dongkyu;Hwang, Kukha;Lee, Minhyung;Kim, Byungkyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.7
    • /
    • pp.635-640
    • /
    • 2015
  • In this paper, we report a non-explosive separation device for a small satellite which utilize a shape memory alloy actuator. Based on previous research, we try to increase the reliability of the proposed device by changing some components. It enables the proposed device to activate under high preload. Also, we confirm it generates low shock which is main advantage of non-explosive separation device. Finally, vibration test which mimics launching environment and thermal vacuum test which mimics space environment are carried out respectively. After each environment test, we confirm the proposed device is successfully activated. Conclusively, we develop a non-explosive separation device which can activate with low shock under high preload after shock and environment tests(vibration and thermal vacuum tests).

High-Altitude Environment Simulation of Space Launch Vehicle Including a Thruster Module (추력기 모듈을 포함한 우주발사체 고공환경모사)

  • Lee, Sungmin;Oh, Bum-Seok;Kim, YoungJun;Park, Gisu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.791-797
    • /
    • 2018
  • In this work, the high-altitude environment simulation study was carried out at an altitude of 65 km exceeding Mach number of 6 after the launch of Korean Space Launch Vehicle using a shock tunnel. To minimize the flow disturbance due to the strut support of test model as much as possible, a few different types of strut configurations were considered. Using the configuration with minimum disturbance, the high-altitude environment simulation experiment including a propulsion system with a single-plume, was conducted. From the thruster test through flow visualization, not only a shockwave pattern, but a general flow-field pattern from the mutual interaction between the exhaust plume and the free-stream undisturbed flow, was experimentally observed. The comparison with the computation fluid dynamic(CFD) results, showed a good agreement in the forebody whereas in the afterbody and the nozzle the disagreement was about ${\pm}7%$ due to unwanted shockwave formation emanated from the nozzle-exit.

Numerical Simulation of Steel/Kevlar Hybrid Composite Helmet Subjected to Ballistic Impact (탄도 충격을 받는 Steel/Kevlar 혼합복합재 헬멧 수치 시뮬레이션)

  • Jo, Jong Hyun;Lee, Young Shin;Jin, Hai Lan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1569-1575
    • /
    • 2012
  • In this study, ballistic impact effects on a helmet were investigated using the AUTODYN-3D program. Two types of materials were used for manufacturing the helmet: single Kevlar and Steel/Kevlar hybrid composites. Furthermore, two types of bullets were used in the simulation: steel spherical and 7.62 mm full-jacketed. In the simulation, the shape deformation of the projectile and internal energy were calculated. From the results, impact velocities above 655 m/s and 845 m/s were required to perforate the Steel/Kevlar helmet with steel spherical and 7.62 mm full-jacketed bullets, respectively. The results show that there was a large difference between the ballistic resistance of the Kevlar and Steel/Kevlar helmets. For the simulation on an NIJ-STD-0106.01 Type II helmet, a 7.62 mm fulljacketed bullet with a striking velocity of 358 m/s was used. Simulation results show that the Steel/Kevlar helmet could resist a 7.62 mm full-jacketed bullet traveling at 358 m/s.

Pyroshock and Vibration Isolation using SMA Mesh Washer Isolator (형상기억합금 메쉬 와셔 절연계의 파이로 충격 및 진동 절연 시험)

  • Youn, Se-Hyun;Jang, Young-Soon;Han, Jae-Hung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.307-313
    • /
    • 2009
  • In general, pyroshock is generated from the actuation of separation devices for several stage, fairing, and satellite separation in the flight of a launch vehicle. During these events, transient vibration phenomenon called pyroshock, which shows large acceleration in the high frequency range, occurs and it can result in the malfunction of electronic components which is equipped inside the launch vehicle or satellite. In this paper, mesh washer isolators made out of SMA were introduced for the isolation of pyroshock. One type of isolator primarily used pseudoelastic characteristics of SMA and the other type of isolator used shape memory effect of SMA. For the study of basic load-displacement relationship of each SMA isolator, compressive loading tests were performed and the results showed the capability of the isolator itself. Pyroshock isolation tests were followed and verified the outstanding isolation performance of isolator. In addition, random vibration tests were also performed and checked the dynamic characteristics of each SMA isolator.

Experimental Study on Underwater Transient Noise Generated by Water-Entry Impact (입수 충격 수중 순간 소음에 대한 실험적 연구)

  • Jung, Youngcheol;Seong, Woojae;Lee, Keunhwa;Kim, Hyoungrok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.1
    • /
    • pp.10-20
    • /
    • 2014
  • To study the water-entry impact noise, on-board experiment using a small launcher firing various objects was performed in the Yellow Sea. As the launcher fires a cylindrical object from the ship vertically, generated noise is measured with a hydrophone on the starboard of Chung-hae, Marine surveyor. Three types of cylindrical objects, which have noses of flat-faced, conical, and hemisphere, were used during the experiment. The measured noise exhibits a time-dependency which can be divided into three phases: (1) initial impact phase, (2) open cavity flow phase, (3) cavity collapse and bubble oscillation phase. In most cases, the waveform of bubble oscillation phase is dominant rather than that of initial impact phase. Pinch-off time, where a cavity begins to collapse, occurs at 0.18 ~ 0.2 second and the average lasting time of bubble was 0.9 ~ 1.3 second. The energy of water-entry impact noise is focused in the frequency region lower than 100 Hz, and the generated noise is influenced by the nose shapes, object mass, and launching velocity. As a result, energy spectral density on the bubble frequency is higher in the order of flat-faced, conical, hemisphere nose, and the increase of initial energy raises the energy spectral density on the bubble frequency in the cylinder body of same shape. Finally, we compare the measurements with the simulated signals and spectrum based on the bubble explosion physics, and obtain satisfactory agreements between them.

Analytical Evaluation of High Velocity Impact Resistance of Two-way RC Slab Reinforced with Steel Fiber and FRP Sheet (강섬유 및 FRP Sheet로 보강한 2방향 RC 슬래브의 고속 충격저항성능에 대한 해석적 평가)

  • Lee, Jin Young;Shin, Hyen Oh;Min, Kyeng Hwan;Yoon, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.1-9
    • /
    • 2013
  • This paper presents high-velocity impact analysis of two-way RC slabs, including steel fibers and strengthening with fiber reinforced polymer (FRP) sheets for evaluating impact resistance. The analysis uses the LS-DYNA program, which is advanced in impact analysis. The present analysis was performed similarly to the high-velocity impact tests conducted by VTT, the technical research center of Finland, to verify the analysis results. High-velocity impact loads were applied to $2100{\times}2100{\times}250$ mm size two-way RC slab specimens, using a non-deformable steel projectile of 47.5kg mass and 134.9m/s velocity. In this research, extra impact analysis of material specimens was carried out to verify the material models used to the analysis. The elastic-plastic hydrodynamic model, concrete damage model and orthotropic elastic model were used to simulate the non-linear softening behavior of steel fiber reinforced concrete (SFRC), and material properties of normal concrete and FRP sheets, respectively. It is concluded that the suggested analysis technique has good reliability, and can be effectively applied in evaluating the effectiveness of reinforcing/retrofitting materials and techniques. Also, the Steel fiber and FRP sheet strengthening systems provided outstanding performance under high-velocity impact loads.

Experimental Study on the Two-Stage Light-Gas Gun (2단 경가스총에 대한 실험적 연구)

  • Lee, Jung-Kuen;Lee, Jong-Sung;Kim, Heuy-Dong;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.345-348
    • /
    • 2010
  • Light gas guns have a large number of applications in various fields of engineering. A two-stage light gas gun can develop an extremely high pressure in a very short interval of time. This can be employed efficiently in the application of ultra-high pressure liquid jets. In general, the two-stage light gas gun is made up of a high pressure tube, a compression tube and a launch tube, each stage being separated by diaphragms. The first diaphragm is installed downstream of the high pressure tube and the second, downstream of the compression tube. In the present study, experiments are carried out to investigate the projectile velocity and pressure behavior in the tubes according to the pressure changes at diaphragm opening. It is found that the rupture pressure of the first diaphragm has a dominant influence on projectile velocity. It is also observed that at pressures greater than 14 bar, the pressure in the launch tube exceeds that in the compression tube.

  • PDF

The Impact Analysis for Water-Entry of Cylindrical Body (원통형 실린더의 입수 충격 해석)

  • 독고욱;김인학
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • When a body enters waters, its original kinetic energy or momentum is distributed among the body and surrounding water in the form of added mass. Due to the transfer of the energy or momentum, the bode is subjected to the hydrodynamic impact forces and acceleration. This impact behavior can be an important criterion of submersible vehicle launched to the air. In this paper, based on Life-boat model, an approximate method is proposed for the evaluation of the forces and responses of cylindrical rigid bode by water entry impact. The impact forces are calculated by yon Karman's momentum theory and motion responses the body, especially acceleration, are calculated by a numerical integration of the motion equations derived by hydrodynamic force equilibrium. The proposed method is expected to be a simple but efficient tool lot the preliminary design or motion analysis of a body subjected to water entry impact.

Vibration and Shock Measurement of KSLV-I Kick Motor on the Ground Test (KSLV-I 킥 모터 지상연소시험에서의 진동 및 충격 계측)

  • Oh, Jun-Seok;Kim, Jeong-Yong;Roh, Woong-Rae;Eun, Hee-Kwang;Im, Jong-Min;Moon, Sang-Mu
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.98-104
    • /
    • 2009
  • A solid kick motor is used for propulsion system of KSLV-I 2nd stage. During combustion of the kick motor, vibration and shock could be generated. And it could be transferred to the vehicle equipment bay through the kick motor body. If vibration and shock transferred to the vehicle equipment bay are considerable, electrical equipments could be disordered. Therefore we need to verify influence of vibration and shock caused by combustion of the kick motor. In this research, we measured vibration of the kick motor on the ground firing test. Based on this measurement data, we analyzed random vibration and shock response spectrum.

  • PDF

FGM-TBC의 열충격 특성에 미치는 진공 플라즈마 용사조건의 영향

  • Jeong, Yeong-Hun;Byeon, Eung-Seon;Nam, Uk-Hui;Lee, Gu-Hyeon;Gang, Jeong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.524-524
    • /
    • 2012
  • Thermal Barrier Coating (TBC)은 미사일, 로켓발사체와 같이 고온에 노출되는 장비를 열로부터 보호하기 위한 코팅이다. 일반적인 Thermal Barrier Coating (TBC)은 모재와 코팅층간의 낮은 접합력과 높은 열충격으로 인한 박리가 많이 나타난다. 그래서 접합력을 높이고, 열충격을 줄이기 위해 모재와 코팅층 사이에 본드코팅층을 만든 Duplex - Thermal Barrier Coating (Duplex-TBC)이 개발되었다. 그러나 Duplex - Thermal Barrier Coating (Duplex-TBC)은 금속재료인 본드코팅층과 세라믹재료인 탑코팅층 사이에서 박리가 많이 발생한다. 이러한 문제점을 해결하기 위해 두 가지 분말을 동시에 코팅하여 본드코팅과 탑코팅의 경계가 없는 Functional Gradient Material - Thermal Barrier Coating (FGM-TBC)의 연구가 필요하다. 본 연구에서는 Functional Gradient Material - Thermal Barrier Coating (FGM-TBC)의 열충격 특성에 미치는 진공 플라즈마 용사 조건의 영향을 조사하였다. Functional Gradient Material - Thermal Barrier Coating (FGM-TBC)는 진공 플라즈마 용사장치를 사용하여 Cu-Cr 합금위에 코팅하였다. 거리, Carrier gas flow, 그리고 챔버 내부의 압력을 달리하여 제조하였다. 사용한 분말은 본드코팅용으로 Amdry 962와 내열 세라믹코팅을 위해 204NS를 사용하였고, 각각 분말 공급조건을 조절하여 두 분말의 비율을 달리하였다. 제조한 Functional Gradient Material - Thermal Barrier Coating (FGM-TBC) 코팅은 전기로에서 50분간 가열한 후, 수조에서 10분간 냉각하는 열충격 실험을 통해 열차폐 성능을 평가 하였다. 이러한 과정에서 진공 플라즈마 용사 조건 및 FGM 조성과 비율이 내열충격 특성에 미치는 영향을 미세조직학적 관점에서 고찰하였다.

  • PDF