• Title/Summary/Keyword: 발광다이오드 암

Search Result 8, Processing Time 0.023 seconds

A potential anticacner therapeutic strategy using light-emitting diode (자궁경부암세포 치료를 위한 발광다이오드의 응용)

  • Park, Chul Woo;Park, Kitae;Choi, Hojong;Choe, Se-woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.712-713
    • /
    • 2017
  • Clinically applicable light emitting diode (LED) has been widely investigated because of relatively low heat generation, low cytotoxicity, and non-invasiveness compared to other therapeutic methods. Therefore, we investigated the therapeutic effects of several wavelengths of light emitting diode against human cervical cancer cells and analyzed the individual inhibitory effect for the cancer cell proliferation. In the experiment, prepared HeLa cells were exposed by red, green and blue light-emitting diode for 10 minutes each. Relatively short-wavelength light-emitting diode (blue) showed stronger therapeutic effects than relatively long-wavelength light-emitting diodes.

  • PDF

Measurement of Skin Dose for Rectal Cancer Patients in Radiotherapy using Optically Stimulated Luminescence Detectors (OSLDs) (광자극발광선량계(OLSDs)를 이용한 직장암 방사선치료 환자의 피부선량 측정)

  • Im, In-Chul;Yu, Yun-Sik;Lee, Jae-Seung
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.2
    • /
    • pp.86-92
    • /
    • 2011
  • This study used the optically stimulated luminescence dosimeters (OSLDs), recently, received the revaluation of usefulness in vivo dosimetry, and the diode detecters to measure the skin dose of patient with the rectal cancer. The measurements of dose delivered were compared with the planned dose from the treatment planning system (TPS). We evaluated the clinical application of OSDs in radiotherapy. We measured the calibration factor of OSLDs and used the percent depth dose to verified, also, we created the three point of surface by ten patients of rectal cancer to measured. The calibration factors of OSLD was 1.17 for 6 MV X-ray and 1.28 for 10 MV X-ray, demonstrating the energy dependency of X-ray beams. Comparison of surface dose measurement using the OSLDs and diode detectors with the planned dose from the TPS, The skin dose of patient was increased 1.16 ~ 2.83% for diode detectors, 1.36 ~ 2.17% for OSLDs. Especially, the difference between planned dose and the delivery dose was increased in the perineum, a skin of intense flexure region, and the OSLDs as a result of close spacing of measuring a variate showed a steady dose verification than the diode detecters. Therefore, on behalf of the ionization chamber and diode detecters, OSLDs could be applied clinically in the verification of radiation dose error and in vivo dosimety. The research on the dose verification of the rectal cancer in the around perineal, a surface of intense flexure region, suggest continue to be.

Development of low cost module for proliferation control of cancer cells using LED and its therapeutic effects (LED를 활용한 저가의 암세포 증식제어 모듈 개발 및 효과)

  • Cho, Kyoungrae;Choe, Se-woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.9
    • /
    • pp.1237-1242
    • /
    • 2018
  • Photodynamic therapy has been suggested as an alternative treatment to current cancer therapy which resulting in a variety of side effects because photodynamic therapy targets specific cancer cells and does not have a significant effect on normal cells. Typically, laser was used as a photodynamic therapy, but this was limited due to high cost and heat reaction. However, compact light emitting diodes that can emit light of various wavelengths have been developed at a low cost, which has a great influence on the low cost development of photodynamic therapy equipment. On the other hand, in the study of photodynamic therapy, the data on the direct effect of visible light are relatively small. Therefore, in this paper, we propose a novel cancer therapeutic module by developing a cancer cell proliferation inhibition module based on an Arduino that is relatively inexpensive, and able to use light of various wavelengths.

Basic study on proliferation control of cancer cells using combined ultrasound and LED therapeutic module (초음파와 LED를 이용한 일체형암세포 증식억제 모듈의 기초연구)

  • Cho, Kyung-rae;Choe, Se-woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.8
    • /
    • pp.1107-1113
    • /
    • 2018
  • Ultrasonography and photodynamic therapy have been proposed as useful tools as a treatment for inducing necrosis of cells using reactive oxygen species. Apoptosis is an internal mechanism necessary for cells regardless of damage. Ultrasound has the effect of inducing the apoptosis of these cells, and the frequency of 1 MHz is the most applicable area for medical use. The laser which is generally used in photodynamic therapy has a heat reaction and the treatment is limited. However, as a small light emitting diode is developed, it shows possibility to minimize the equipment and reduce heat reaction. On the other hand, there are relatively few researches on direct effects of light compared with studies using photosensitizers, and the area is also limited. Therefore, in this paper, we have developed a cancer cell proliferation control module using ultrasonic and light emitting diodes, which have relatively few side effects, and quantitatively analyze the effect of the module to propose an optimal suppression technique.

Fabrication of Flexible Micro LED for Beauty/Biomedical Applications (미용/의료용 유연 마이크로 발광 다이오드 디바이스 제작 공정)

  • Jae Hee Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.563-569
    • /
    • 2023
  • Micro light-emitting diodes (LEDs), with a chip size of 100 micrometers or less, have attracted significant attention in flexible displays, augmented reality/virtual reality (AR/VR), and bio-medical applications as next-generation light sources due to their outstanding electrical, optical, and mechanical performance. In the realm of bio-medical devices, it is crucial to transfer tiny micro LED chips onto desired flexible substrates with low precision errors, high speed, and high yield for practical applications on various parts of the human body, including someone's face and organs. This paper aims to introduce a fabrication process for flexible micro LED devices and propose micro LED transfer techniques for cosmetic and medical applications. Flexible micro LED technology holds promise for treating skin disorders, cancers, and neurological diseases.

Basic study on proliferation control of cancer cells using Arduino based therapeutic module (아두이노 기반 암세포 증식억제 모듈의 효과에 대한 기초연구)

  • Cho, Kyoungrae;Park, Kitae;Kim, Minsoo;Choe, Se-woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.470-472
    • /
    • 2017
  • Currently, various studies using chemotherapy, such as surgical treatment, radiation or optical therapy, and chemotherapy, are underway. In addition, expensive chemotherapeutic drugs and large-scale equipment have been developed to improve the accuracy and therapeutic effect. However many side effects caused by misuse of the kind of light source, radiation, and cancer treatment have been observed. Therefore, in this paper, we propose a novel chemotherapeutic method by developing a customized cancer cell proliferation inhibition module based on a microcontroller that is relatively inexpensive, easy to operate, and able to operate in various wavelength light sources.

  • PDF

Plant Growth and Ascorbic Acid Content of Spinacia oleracea Grown under Different Light-emitting Diodes and Ultraviolet Radiation Light of Plant Factory System (식물공장시스템의 발광다이오드와 UVA 광원 하에서 자란 시금치 생육 및 아스코르브산 함량)

  • Park, Sangmin;Cho, Eunkyung;An, Jinhee;Yoon, Beomhee;Choi, Kiyoung;Choi, Eunyoung
    • Journal of Bio-Environment Control
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • The study aimed to determine effects of light emitting diode (LED) and the ultraviolet radiation (UVA) light of plant factory on plant growth and ascorbic acid content of spinach (Spinacia oleracea cv. Shusiro). Plants were grown in a NFT (Nutrient Film Technique) system for 28 days after transplanting with fluorescent light (FL, control), LEDs and UVA (Blue+UVA (BUV), Red and Blue (R:B(2:1)) + UVA (RBUV), Red+UVA (RUV), White LED (W), Red and Blue (R:B(2:1)), Blue (B), Red (R)) under the same light intensity ($130{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and photoperiod (16/8h = day/night). All the light sources containing the R (R, RB, RUV, and RBUV) showed leaf epinasty symptom at 21 days after transplanting (DAT). Under the RUV treatment, the lengths of leaf and leaf petiole were significantly reduced and the leaf width was increased, lowering the leaf shape index, compared to the R treatment. Under the BUV, however, the lengths of leaf and leaf petiole were increased significantly, and the leaf number was increased compared to B. Under the RBUV treatment, the leaf length was significantly shorter than other treatments, while no significant difference between the RBUV and RB for the fresh and dry weights and leaf area. Dry weights at 28 days after transplanting were significantly higher in the R, RUV and BUV treatments than those in the W and FL. The leaf area was significantly higher under the BUV treatment. The ascorbic acid content of the 28 day-old spinach under the B was significantly higher, followed by the BUV, and significantly lower in FL and R. All the integrated data suggest that the BUV light seems to be the most suitable for growth and quality of hydroponically grown spinach in a plant factory.

Effect of 850 nm near-infrared light emitting diode irradiation on the production of 5-aminolevulinic acid in Rhodobacter sphaeroides (Rhodobacter sphaeroides에서 5-aminolevulinic acid 생산에 대한 850 nm 근적외선 발광다이오드 조사 효과)

  • Mo, SangJoon
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.3
    • /
    • pp.217-223
    • /
    • 2021
  • 5-aminolevulinic acid (ALA) is a representative photosensitizer used in numerous fields including cancer diagnosis and treatment. In this study, experiments were conducted to optimize the growth of Rhodobacter sphaeroides and production of ALA through LED irradiation of various wavelengths, addition of organic acid precursors of ALA, and changes in glucose concentration. After 72 h cultivation, the 850 nm wavelength LED irradiated at the same light intensity as the incandescent lamp increased the growth of R. sphaeroides and the production of ALA about 1.5- and 1.8-fold as compared with the control, respectively (p <0.0001 and p <0.0001). As a result of culturing R. sphaeroides by irradiating an LED with a wavelength of 850 nm after adding organic acid to the final concentration of 5 mM in culture medium, the production of ALA was increased about 2.8-fold in medium supplemented with pyruvic acid compared with the control (p <0.0001). In addition, the growth of the strain and the production of ALA were increased about 2.9- and 3.4-fold in medium supplemented with 40 mM glucose compared to the control which added only 5 mM pyruvic acid, respectively (p <0.0001 and p <0.0001). The yield of ALA per cell dry mass was about 1.4 folds higher than that of the control in 20 and 40 mM glucose, respectively (p <0.001). In conclusion, the growth of R. sphaeroides and production of ALA were increased by 850 nm wavelength LED irradiation. It also optimized the growth of R. sphaeroides and production of ALA through organic acid addition and glucose concentration changes.