• Title/Summary/Keyword: 받침교체

Search Result 16, Processing Time 0.021 seconds

Prediction of Crack Distribution for the Deck and Girder of Single-Span and Multi-Span PSC-I Bridges (단경간 및 다경간 PSC-I 교량의 바닥판 및 거더의 균열분포 예측)

  • Hyun-Jin Jung;Hyojoon An;Jaehwan Kim;Kitae Park;Jong-Han Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.102-110
    • /
    • 2023
  • PSC-I girder bridges constitute the largest proportion among highway bridges in Korea. According to the precision safety diagnosis data for the past 10 years, approximately 41.3% of the PSC-I bridges have been graded as C. Furthermore, with the increase in the aging of bridges, preemptive management is becoming more important. Damage and deterioration to the deck and girder with a long replacement cylce can have considerable impacts on the service and deterioration of a bridge. In addition, the high rate of device damages, including expansion joints and bearings, necessitates an investigation into the influence of the device damage in the structural members of the bridge. Therefore, this study defined representative PSC-I girder bridges with single and multiple spans to evaluate heterogeneous damages that incorporate the damage of the bridge member and device with the deterioration of the deck. The heterogeneous damages increased a crack area ratio compared to the individual single damage. For the single-span bridge, the occurrence of bearing damage leads to the spread of crack distribution in the girder, and in the case of multi-span bridges, expansion joint damage leads to the spread of crack distribution in the deck. The research underscores that bridge devices, when damaged, can cause subsequent secondary damage due to improper repair and replacement, which emphasizes the need for continuous observation and responsive action to the damages of the main devices.

Generation of Korean artificial earthquakes for Fragility curve (손상도 곡선 작성을 위한 한국형 인공지진의 생성)

  • Nam, Youngyoon;Lee, Jongheon
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.3
    • /
    • pp.406-412
    • /
    • 2015
  • Recently, frequent earthquakes can cause serious damage to the bridge. So newly constructed bridge is considered earthquake resistant design, and for the existing old bridge evaluation of damage state is needed. In this paper, replacement of US-artificial earthquakes which are used for the construction of fragility curve for evaluating damage state to Korean artificial earthquakes to meet the Korean specifications is studied. For the generation of artificial earthquakes, the fragility curves are constructed for the PGA, for the cases of having isolated bearing and not having that.

The Effects on Structures caused by the Replacement of Bridge Bearing (교량구조물의 받침 교체 효과)

  • Park, Chang-Ho;Ku, Bon-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.209-217
    • /
    • 2002
  • The effects on structures caused by the replacement of the bridge bearings are investigated in this study. The bearings of the bridge are seriously deteriorated because of the breakage of lower concrete and the corrosion of the bearing itself. Also, the negative reaction states are created at some bearings on the abutment. Then, the bridge has occurred excessive vibrations and severe noise and impact whenever heavy trucks pass the above joints. The existing bearings are replaced using the adjustable bearing. The height of the bearings is adjusted to minimize the level difference of above joint and also to induce the appropriate distribution of live loads The effects of replacing the bearings are investigated by measuring the behaviors of the bridge without and with replacing works. The results without replacing the bearing show that the distribution of displacements and stresses is distorted in comparison with the analytical results. Also the bridge without replacing the bearing shows that the impact and vibration from the heavy trucks are larger than those with replacing the bearing. Load carrying capacity of the bridge increase about 1.8 times through replacing the bearing. The above results show that the structural performance of the bridge is improved by replacing only bridge bearings.

Improvement of Seismic Performance of Existing Bridges using Isolation (지진격리장치를 이용한 기존 교량의 내진성능 향상)

  • 한경봉;김민지;박선규
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.9-17
    • /
    • 2004
  • The seismic performance evaluation and retrofit process are very important in old existing bridges. If the result is not appropriate. then a retrofit process are required. Among various retrofit methods, the seismic isolation is a very useful method. because it can be applied by replacing old bridge bearings. In this study, the effectiveness of seismic isolation is rationally verified. For this purpose, two seismic isolations used widely are selected and non-linear static and dynamic analyses are performed. The responses of existing bridges are compared with those of retrofited bridges by seismic isolation bridge for earthquake of target level. and seismic performances are evaluated.

Dendrochronological Dating for the Gwanghanru Pavilion, Namwon, Korea (남원 광한루 목부재의 연륜연대 분석)

  • Park, Won-kyu;Kim, Yo-jung;Han, Sang-hyo
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.1
    • /
    • pp.152-163
    • /
    • 2014
  • In this study, Gwanghanru Pavilion (Namwon-si, Cheonbuk Province) was dated by tree rings of pines (Pinus densiflora Sieb. et Zucc., 'sonamu' in Korean). The present Gwanghanru Pavilion is composed of three parts: main, wing and entrance parts. The main part is known to have been built in 1626 and the entrance hall in 1879, but the date of construction of the wing part is still unknown. We dated a total of 55 wood samples which were replaced during the repair process in 2001~2002. Tree-ring dates indicated that both main and wing parts were built in 1626. Tree rings also revealed that the entrance hall was constructed in 1880~1881, and both main and wing parts were heavily repaired together while appending the entrance hall. In conclusion, dendrochronology, i.e., tree-ring dating, was a useful and accurate method to identify the critical dates-such as the dates of original construction, reconstruction, repairs and extensions-for the history of Korean traditional buildings.

Damage-Spread Analysis of Heterogeneous Damage with Crack Degradation Model of Deck in RC Slab Bridges (RC 슬래브교의 바닥판 균열 열화모델에 따른 이종손상 확산 분석)

  • Jung, Hyun-Jin;An, Hyo-Joon;Kim, Jae-Hwan;Part, Ki-Tae;Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.93-101
    • /
    • 2022
  • RC Slab bridges in Korea account for more than 70% of the total bridges for more than 20 years of service. As the number of aging structures increases, the importance of safety diagnosis and maintenance of structures increases. For highway bridges, cracks are a main cause of deck deterioration, which is very closely related to the decrease in bridge durability and service life. In addition, the damage rate of expansion joints and bearings accounts for approximately 73% higher than that of major members. Therefore, this study defined damage scenarios combined with devices damages and deck deterioration. The stress distribution and maximum stress on the deck were then evaluated using design vehicle load and daily temperature gradient for single and combined damage scenarios. Furthermore, this study performed damage-spread analysis and predicted condition ratings according to a deck deterioration model generated from the inspection and diagnosis history data of cracks. The heterogeneous damages combined with the member damages of expansion joints and bearings increased the rate of crack area and damage spread, which accelerated the time to reach the condition rating of C. Therefore, damage to bridge members requires proper and prompt repair and replacement, and otherwise it can cause the damage to bridge deck and the spread of the damage.