• Title/Summary/Keyword: 반잠수식 해양 구조물

Search Result 11, Processing Time 0.02 seconds

A Study on the Motion Responses about Shape Variety of Semi-submersible Rig (반잠수식 Rig의 형상 변화에 따른 운동 성능에 관하여)

  • 박노식;이옥규
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.180-184
    • /
    • 2001
  • 본 연구에서는 반잠수식 Rig의 형상에 따른 최적 형상을 검토하기 위하여 최근 건조되고 있는 4-Column과 2-Lowhull 을 가진 원통형 Column과 4각 Column형을 공시모형으로 택하여 규칙파중 두 구조물에 작용하는 유체력과 유체력에 의한 운동 응답을 계산, 형상에 따른 유체 역학적 특성과 동요 진폭의 관계를 검토하였다. 수치계산은 3차원 특이점 분포법을 이용하여 정상상태에 대하여 실행하였다. 구조물의 형상과 역학적인 간섭의 영향을 이용, 보다 성능이 우수한 형상을 얻을 수 있음을 확인하였다.

  • PDF

A Study on the Motion Responses about Shape Variety of Semi-submersible Rig (반잠수식 Rig의 형상 변화에 따른 운동 성능에 관하여)

  • Park, Ro-Sik;Lee, Ok-Kyu;Kwak, Suk-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.198-203
    • /
    • 2002
  • 본 연구에서는 반잠수식 Rig의 형상에 따른 최적 형상을 검토하기 위하여 최근 건조되고 있는 4-Column과 2-Lowhull을 가진 사각 Column에 원통형 Column을 혼합한 혼합형 과 4각 Column형을 공시모형으로 택하여 규칙파중 두 구조물에 작용하는 유체력과 유체력에 의한 운동 응답을 계산하고, 4각 Column을 가지는 구조물의 길이, 폭, 홀수를 변화시킨 Series 에 따른 유체 역학적 특성과 동요 진폭의 관계를 검토하였다. 수치계산은 3차원 특이점 분포법을 이용하여 정상상태에 대하여 실행하였다. 구조물의 형상과 역학적인 간섭의 영향을 이용, 보다 성능이 우수한 형상을 얻을 수 있음을 확인하였다.

  • PDF

Development of Deep Draught Semisubmersible Shape (심흘수 반잠수식 해양구조물 (DDS) 형상 개발 연구)

  • Lee, Jin-Ho;Lee, June-Young;Kim, Byung-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.138-141
    • /
    • 2008
  • This paper treats the development of a new type of deep draught semisubmersible offshore structural shape that has excellent heave motion response and less down-time. This new type of semisubmersible shape is characterized by heave dampers at each pontoon corner and appropriate column size adjustment to achieve the desired cancellation and resonance motion period. It was found that the final model had efficient workability, based on the wavescatter diagrams for the GoM and North Atlantic ocean, due to less heave motion, although the specific heave response at the 100 year return period wave condition in the North Atlantic was more or less increased.

Hydroelastic Response Characteristics of a Very Large Offshore Structures of Somisubmersible Type in waves (반잠수식 초대형 해양구조물의 파랑중 탄성응답특성)

  • Goo, Ja-Sam;Kim, Kyung-Tae;Hong, Bong-Ki
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.19-27
    • /
    • 1999
  • To design a very large floating structure, such as a floating airport, we have to estimate the hydroelastic responses of a very large floating structure (VLFS) exactly. We developed the numerical method for estimating the hydroelastic responses of the VLFS. The developed numerical approach is based on a combination of the three-dimensional source distribution method, the wave interaction theory and the finite element method for structurally treating the space frame elements. The Numerical results of the hydroelastic responses and steady drift forces of a somisubmersible type offshore structure, which is supported by the 33(3 by 11) floating bodies, with various bending rigidities are illustrated.

  • PDF

Parameter Study of Position Keeping for Semi-submersible Offshore Structure by Tugs (Tug에 의한 반잠수식 해양 구조물 위치 유지를 위한 제반 파라메터 검토)

  • Lee, Jin Ho;Park, Jun Heum;Jang, Hag Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.274-279
    • /
    • 2014
  • This paper investigates the line dynamic forces connecting tugs and a floater, where the planar motion of the floater is due to the weather criteria during the position keeping of the offshore structure by tugs. The analysis situation consists of the position keeping states for the seabed mooring line connection work of the offshore structure at the offshore site. Specifically, the decision about the tug power capacity for the position keeping is essential and depends on the weather criteria, line characteristics, length of line, etc. The planar motion of the structure is constrained by the interference of the installation vessel's operational range, behavior of the underwater fairlead, and other surrounding structures. In this paper, the tug line forces and planar motion of an offshore structure are summarized dependent on the tug line length and line material characteristics in the states fora given floater draft and weather criteria. The tug line dynamic forces and planar motion evaluated here will be used to determine the proper tug power and clearance of an offshore structure.

Evaluation of Mating Dynamic Forces of Semi-submersible Offshore Structure Topside Module (반잠수식 해양 구조물 상부 모듈의 해상 결합 작업시 동하중 평가)

  • Lee, Jin-Ho;Jung, Hyun-Soo;Kim, Byung-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.9-15
    • /
    • 2013
  • This paper calculates the mating dynamic forces of a semi-submersible offshore structure's topside module, where a hull moored in the sea is combined with a topside module carried by a heavy lift vessel, as a mating installation method. The environmental conditions include various wave directions and wave heights, with constant wind and current speeds. Appropriate ballast and de-ballast plans for the heavy lift vessel and hull of the semi-rig should be performed in order to safely obtain these forces, whereas a fixed platform or the GBS (Gravity based structure) type of offshore structure only needs a ballast plan for the heavy lift vessel. From this paper, the allowable wave height or wave direction for the mating procedure can be investigated based on the standard DAF (Dynamic amplitude factor) of the rules and regulations.

Study on the Behavior of Tubular Member with Partial End Fixity (부분 고정단을 가진 원통형 부재의 거동에 관한 연구)

  • Cho, K. N.
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.90-94
    • /
    • 1988
  • 본 논문은 반 잠수식 시추선과 선박과의 충돌해석에의 정적 압축법의 응용에 대해 다루었다. 선박이 시추선의 취약 부재에 충돌하는 경우를 가정하였으며 이 취약한 부재의 충돌에너지 흡수능력을 상세 해석 없이 추출하는 방법으로, 관련된 구조물 전체 강성 매트릭스를 부재의 양단에 정적 압축을 시켜 양단 유연도를 추출한 뒤 이 유연도를 양단에 가진 원통형 부재를 해석함으로써 외력-변형 관계를 얻을수 있었다. 충돌에너지 양은 외력-변형 선도를 적분함으로써 얻을 수 있다. 새로운 방법에 의한 결과를 3차원 수치해석 방법과 강체 프라스틱 방법에 의해서 얻어진 결과와 상호 비교하였으며, 이 새로운 방법이 해양구조물 충돌해석이 매우 효과적으로 응용될 수 있음을 알게 되었다.

  • PDF

Conceptual Design of Large Semi-submersible Platform for Wave-Offshore Wind Hybrid Power Generation (파력-해상풍력 복합발전을 위한 대형 반잠수식 플랫폼의 개념설계)

  • Kim, Kyong-Hwan;Lee, Kangsu;Sohn, Jung Min;Park, Sewan;Choi, Jong-Su;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.3
    • /
    • pp.223-232
    • /
    • 2015
  • The present paper considers the conceptual design of floating wave-offshore wind hybrid power generation system. The worldwide demand for ocean renewable energy is increasing rapidly. Wave and offshore wind energy have been attractive among the various ocean renewable energy sources, and the site to generate electricity from wave and offshore wind accords well together. This means that a hybrid power generation system, which uses wave and offshore wind energy simultaneously has many advantages and several systems have been already developed in Western Europe. A R&D project for a 10 MW class floating wave-offshore wind hybrid power generation system has been also launched in Korea. A semi-submersible platform, which has four vertical columns at each corner of the platform to be connected with horizontal pontoons, was designed for this system considering arrangements of multiple wind turbines and wave energy converters. A mooring system and power cable were also designed based on the metocean data of installation site. In the present paper, those results are presented, and the difficulties and design method in the design of hybrid power generation system are presented.

Study on Optimal Damping Model of Very Large Offshore Semi-submersible Structure (초대형 반잠수식 해양 구조물의 최적 감쇠 모델에 대한 고찰)

  • Lee, Hyebin;Bae, Yoon Hyeok;Kim, Dongeun;Park, Sewan;Kim, Kyong-Hwan;Hong, Keyyong
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • In order to analyze the response of the offshore structure numerically, the linear potential theory is generally applied for simplicity, and only the radiation damping is considered among various damping forces. Therefore, the results of a numerical simulation can be different from the motion of the structure in a real environment. To reduce the differences between the simulation results and experimental results, the viscous damping, which affects the motion of the structure, is also taken into account. The appropriate damping model is essential for the numerical simulation in order to obtain precise responses of the offshore structure. In this study, various damping models such as linear or quadratic damping and the nonlinear drag force from numerous slender bodies were used to simulate the free decay motion of the platform, and its characteristics were confirmed. The optimized damping model was found by comparing the simulation results to the experimental results. The hydrodynamic forces and wave exciting forces of the structure were obtained using WAMIT, and the free decay test was simulated using OrcaFlex. A free decay test of the scale model was performed by KRISO.

A Dynamic Response Analysis of Very Large Offshore Structures in Multi-Directional Irregular Waves (다방향 불규칙파중의 초대형 해양구조물의 동적응답해석)

  • Goo, J.S.;Jo, H.J.;Kim, K.T.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.2
    • /
    • pp.90-103
    • /
    • 1997
  • A numerical procedure is described for predicting the motion and structural responses of the very large floating offshore structures supported by multiple 3-D floating bodies of arbitrary shape in multi-directional irregular waves. The developed numerical approach taking into account of the hydrodynamic interactions among the multiple floating bodies is based on a combination of the 3-D source distribution method, the wave interaction theory, the finite element method and the spectral analysis method to get the significant values of the dynamic responses in the multi-directional irregular waves. The effects of wave interactions and directionality on the dynamic responses of a very large offshore structure, which is semisubmersible ring type, are numerically examined.

  • PDF