• Title/Summary/Keyword: 반응 표면 분석

Search Result 2,028, Processing Time 0.03 seconds

Environmental Impacts of Food Waste Compost Application on Paddy Soil (음식물쓰레기 퇴비 시용이 논토양에 미치는 영향)

  • So, Kyu-Ho;Seong, Ki-Seog;Seo, Myung-Chul;Hong, Seung-Gil
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.85-94
    • /
    • 2007
  • To determine the influence of food waste compost (FWC) application on paddy soil, FWC was applied to the paddy soil and then compared with farmer's practice as to the effects on rice and soil environment. Initially, pig manure compost (PMC) had high content of phosphorus ($15g\;kg^{-1}$) and potassium ($23g\;kg^{-1}$), while FWC had high content of total nitrogen ($13g\;kg^{-1}$) and salinity ($18.5g\;kg^{-1}$). Comparison was also made between chemical fertilizer and FWC use as a trial in the paddy field under the clay loam and sandy loam soil. In the panicle formation stage, chemical fertilizer application was proper in clay loam while PMC application was proper in sandy loam. However, chemical fertilizer produced higher yield compared to compost treatment, both on clay loam and sandy loam with 20~25% and 17~19%, respectively. The lower yield in sandy loam maybe due to slow mineralization of compost such that the crop did not effectively use it. Organic matter content in paddy soil after experiment was higher in FWC and PMC plots compared to that in chemical fertilizer plots. But the other soil properties were comparable. Therefore, the FWC compost had little effect on soil when it use as a trial in paddy field. Likewise, after the application of FWC as a trial, analysis of nitrate nitrogen and ammonium nitrogen in the surface water and 60 cm depth of paddy soil water nine days after planting was done. Results revealed that concentration of ammonium nitrogen was similar to irrigation water while nitrate nitrogen concentration was not detected, and hence did not contribute to water pollution. It is concluded that the application of FWC in the paddy field had not affected on environmental pollution in the paddy field. But its use as compost during rice culture reduced yield quantity. Such study should include selection of compost material, amount and method of compost application.

Optimization of Solvent Extraction Process on the Active Functional Components from Chinese Quince (모과내 기능성 유용성분 용매추출공정의 최적화)

  • Jeon, Ju-Yeong;Jo, In-Hee;Kyung, Hyun-Kyu;Kim, Hyun-A;Lee, Chang-Min;Choi, Yong-Hee
    • Food Engineering Progress
    • /
    • v.14 no.2
    • /
    • pp.92-98
    • /
    • 2010
  • In this study, various active functional components in Chinese Quince were extracted by solvent extraction method. A central composit design for optimization was applied to investigate the effects of independent variables such as solvent to sample ratio ($X_{1}$), extraction temperature ($X_{2}$), and extraction time ($X_{3}$) on the soluble solid contents ($Y_{1}$), total phenols ($Y_{2}$), electron donating ability ($Y_{3}$), browning color ($Y_{4}$) and reducing sugar contents ($Y_{5}$). It was found that extraction temperature and extraction time were the main effective factors in this extraction process. The maximum soluble solid contents of 35.77% was obtained at 26.38 mL/g ($X_{1}$), 72.82$^{\circ}C$ ($X_{2}$) and 74.86 min ($X_{3}$) in saddle point. Total phenols were rarely affected by solvent ratio and extraction time, but it was affected by extraction temperature. The maximum total phenols of 20.70% was obtained at 22.61 mL/g ($X_{1}$), 84.49$^{\circ}C$ ($X_{2}$), 77.25 min ($X_{3}$) in saddle point. The electron donating ability was affected by extraction time. The maximum electron donating ability of 94.12% was obtained at 10.65 mL/g ($X_{1}$), 67.78$^{\circ}C$ ($X_{2}$), 96.75 min ($X_{3}$) in saddle point. The maximum browning color of 0.32% was obtained at 23.77 mL/g ($X_{1}$), 87.27$^{\circ}C$ ($X_{2}$), 96.68 min ($X_{3}$) in saddle point. The maximum value of reducing sugar content of 10.55% was obtained at 26.83 mL/g ($X_{1}$), 82.167$^{\circ}C$ ($X_{2}$), 81.94 min ($X_{3}$). Reducing sugar content was affected by extraction time.

Optimization of Extraction of Functional Components from Black Rice Bran (흑미 미강의 기능성 성분 추출 공정 최적화)

  • Jo, In-Hee;Choi, Yong-Hee
    • Food Engineering Progress
    • /
    • v.15 no.4
    • /
    • pp.388-397
    • /
    • 2011
  • The purpose of this study was to determine the optimum ethanol extraction conditions for maximum extraction of functional components such as ferulic acid, oryzanol, and toopherol from black rice bran using Response Surface Methodology (RSM). A central composite design was applied to investigate the effects of the independent variables of solvent ratio ($X_{1}$), extraction temperature ($X_{2}$) and extraction time ($X_{3}$) on the dependent variables such as total phenol components ($Y_{1}$), total flavonoids compounds ($Y_{2}$), electron donating ability ($Y_{3}$), $\gamma$-oryzanol ($Y_{4}$), ferulic acid ($Y_{5}$) and $\alpha$-toopherol components ($Y_{6}$). ANOVA results showed that coefficients of determination (R-square) of estimated models for dependent variables ranged from 0.8939 to 0.9470. It was found that solvent ratio and extraction temperature were the main effective factors in this extraction proess. Particularly, the extraction efficiency of ferulic acid, $\gamma$-oryzanol and $\alpha$-toopherol components were significantly affected by extraction temperature. As a result, optimum extraction conditions were 20.35 mL/g of solvent ratio, 79.4$^{\circ}C$ of extraction temperature and 2.88 hr of extraction time. Predicted values at the optimized conditions were acceptable when compared with experimental values.

Optimization of β-Glucan Extraction Process from Rice Bran and Rice Germ Using Response Surface Methodology (미강과 배아로부터 β-glucan의 추출조건 최적화 및 기능성 생리활성)

  • Jeon, Ju-Yeong;Park, Ji-Hae;Kim, Se-Hwan;Choi, Yong-Hee
    • Food Engineering Progress
    • /
    • v.13 no.1
    • /
    • pp.8-15
    • /
    • 2009
  • This study was investigated on optimal conditions of the functional activities of ${\beta}$-glucan which was extracted from rice bran (RB) and rice germ (RG) using response surface methodology. The extraction temperature was varied in the $80-100^{\circ}C$, the extraction time between 2-10 min, and the ethanol concentration was in the interval of 30-70%. A central composite design was applied to investigate the effects of independent variables of extraction temperature ($X_1$), extraction time ($X_2$) and ethanol concentration ($X_3$) on dependent variables such as electron donating ability of RB ($Y_1$), electron donating ability of RG ($Y_2$), total phenolics of RB ($Y_3$), total phenolics of RG ($Y_4$), ${\beta}$-glucan contents of RB ($Y_5$) and ${\beta}$-glucan contents of RG ($Y_6$). As a result, the highest $Y_1$ level was 84.02% at $92.60^{\circ}C$, 2.75 min and 60.41% in saddle point. This value was affected by extraction temperature (P<0.05). The value of $Y_2$ was found to be the highest at $87.52^{\circ}C$, 2.23 min and 54.40% in saddle point. The highest $Y_3$ level was $98.56^{\circ}C$, 6.69 min and 40.26% in saddle point, and this extraction was greatly influenced by extraction temperature (P<0.01) and ethanol concentration (P<0.05). The value of $Y_4$ was found to be highest at $95.73^{\circ}C$, 9.19 min and 53.67% in minimum point. The value of $Y_5$ was found to be the highest at $96.23^{\circ}C$, 7.70 min and 63.69% in saddle point. The value of $Y_6$ was found to be highest at $87.82^{\circ}C$, 2.10 min and 50.03% in minimum point, and this extraction was greatly influenced by extraction time (P<0.01).

A Study on Facial Expression Acting in Genre Drama - with Focus on K-Drama Voice2 - (장르 드라마에서의 표정연기연구 - 드라마 '보이스2'를 중심으로 -)

  • Oh, Youn-Hong
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.8
    • /
    • pp.313-323
    • /
    • 2019
  • For the actors on video, facial expression acting can easily become 'forced facial expression' or 'over-acting'. Also, if self-restraint is emphasized too much, then it becomes 'flat acting' with insufficient emotions. By bringing forth questions in regard to such facial expression acting methods, this study analyzed the facial expression acting of the actors in genre dramas with strong commercial aspects. In conclusion, the facial expression acting methods of the actors in genre dramas were being conducted in a typical way. This means that in visual conventions of video acting, the aesthetic standard has become the important standard in the facial expression acting of the actors. In genre dramas, the emotions of the characters are often revealed in close-up shots. Within the close-up shot, the most important expressive medium in a 'zoomed-in face' is the 'pupil of the eye', and emotions are mostly expressed through the movements of the eye and muscles around it. The second most important expressive medium is the 'mouth'. The differences in the degree of opening and closing the mouth convey diverse emotions along with the expression of the 'eye'. In addition, tensions in the facial muscles greatly hinder the expression of emotions, and the movement of facial muscles must be minimized to prevent excessive wrinkles from forming on the surface of the face. Facial expressions are not completed just with the movement of the muscles. Ultimately, the movement of the muscle is the result of emotions. Facial expression acting takes place after having emotional feelings. For this, the actor needs to go through the process of 'personalization' of a character, such as 'emotional memory', 'concentration' and 'relaxation' which are psychological acting techniques of Stanislavsky. Also, the characteristics of close-up shots that visually reveal the 'inner world' should be recognized. In addition, it was discovered that the facial expression acting is the reaction acting that provides the important point in the unfolding of narratives, and that the method of facial expression and the size of the shots required for the actors are different depending on the roles of main and supporting characters.

Development of a Rapid Enrichment Broth for Vibrio parahaemolyticus Using a Predictive Model of Microbial Growth with Response Surface Analysis (미생물 생장 예측모델과 반응표면분석법을 이용한 Vibrio parahaemolyticus의 신속 증균배지 개발)

  • Yeon-Hee Seo;So-Young Lee;Unji Kim;Se-Wook Oh
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.6
    • /
    • pp.449-456
    • /
    • 2023
  • In this study, we developed Rapid Enrichment Broth for Vibrio parahaemolyticus (REB-V), a broth capable enriching V. parahaemolyticus from 100 CFU/mL to 106 CFU/mL within 6 hours, which greatly facilitates the rapid detection of V. parahaemolyticus. Using a modified Gompertz model and response surface methodology, we optimized supplement sources to rapidly enrich V. parahaemolyticus. The addition of 0.003 g/10 mL of D-(+)-mannose, 0.002 g/10 mL of L-valine, and 0.002 g/10 mL of magnesium sulfate to 2% (w/v) NaCl BPW was the most effective combination of V. parahaemolyticus enrichment. Optimal V. parahaemolyticus culture conditions using REB-V were at pH 7.84 and 37℃. To confirm REB-V culture efficiency compared to 2% (w/v) NaCl BPW, we assessed the amount of enrichment achieved in 7 hours in each medium and extracted DNA samples from each culture every hour. Real-time PCR was performed using the extracted DNA to verify the applicability of this REB-V culture method to molecular diagnosis. V. parahaemolyticus was enriched to 5.452±0.151 Log CFU/mL in 2% (w/v) NaCl BPW in 7 hours, while in REB-V, it reached 7.831±0.323 Log CFU/mL. This confirmed that REB-V enriched V. parahaemolyticus to more than 106 CFU/mL within 6 hours. The enrichment rate of REB-V was faster than that of 2% (w/v) NaCl BPW, and the amount of enrichment within the same time was greater than that of 2% (w/v) NaCl BPW, indicating that REB-V exhibits excellent enrichment efficiency.

Use of extraction solvent method to monitor the concentrations of acidic polysaccharides and ginsenosides from red and black ginseng (추출용매에 따른 홍삼 및 흑삼의 산성다당체와 진세노사이드 함량 모니터링)

  • Gee Dong Lee
    • Food Science and Preservation
    • /
    • v.30 no.5
    • /
    • pp.857-867
    • /
    • 2023
  • In this study, the extraction yield, acidic polysaccharides and ginsenosides of red and black ginseng were optimized by using the response surface methodology in consideration of the ethanol concentration and temperature of the extraction. The R2 of the model formula for the yield, acidic polysaccharides and ginsenosides was 0.8378-0.9679 (p<0.1). An optimal extraction yield of 5.29% was reached for red ginseng soluble solids when 1.52% ethanol concentration was used at a temperature of 67.27℃. Additionally, the optimal extraction yield for black ginseng soluble solid was 6.11% when 3.12% ethanol concentration was used at a temperature of 66.13℃. Furthermore, the optimal conditions for extracting acidic polysaccharides from red ginseng were using an ethanol concentration of 4.03% at a temperature of 69.61℃; a yield of 1.86 mg/mL was obtained. The optimal extraction yield for acidic polysaccharides from black ginseng was 1.80 mg/mL when extracted using a concentration of 24.67% of ethanol at a temperature of 71.14℃. An optimal extraction yield of 0.22 mg/mL was reached for ginsenoside Rg1 from red ginseng when 79.92% ethanol concentration was used at a temperature of 70.62℃. The optimal extraction yield of ginsenoside Rg3 from black ginseng was 0.31 mg/mL when ethanol was used at a concentration of 75.70% at a temperature of 65.49℃. The ideal extraction conditions for obtaining the maximum yield of both acidic polysaccharide and ginsenoside from red and black ginseng were using ethanol at a concentration between 35 and 50% at an extraction temperature of 70℃.

Removal of Red Tide Organisms -2. Flocculation of Red Tide Organisms by Using Loess- (적조생물의 구제 -2. 황토에 의한 적조생물의 응집제거-)

  • KIM Sung-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.5
    • /
    • pp.455-462
    • /
    • 2000
  • The objective of this study was to examine the physicochemical characteristics of coagulation reaction between loess and red tide organisms (RTO) and its feasibility, in developing a technology for the removal of RTO bloom in coastal sea. The physicochemical characteristics of loess were examined for a particle size distribution, surface characteristics by scanning electron microscope, zeta potential, and alkalinity and pH variations in sea water. Two kinds of RTO that were used in this study, Cylindrothen closterium and Skeietonema costatum, were sampled in Masan bay and were cultured in laboratory. Coagulation experiments were conducted using various concentrations of loess, RTO, and a jar tester. The supernatant and RTO culture solution were analyzed for pH, alkalinity, RTO cell number. A negative zeta potential of loess increased with increasing pH at $10^(-3)M$ NaCl solution and had -71.3 mV at pH 9.36. Loess had a positive zeta potential of +1,8 mV at pH 1.98, which resulted in a characteristic of material having an amphoteric surface charge. In NaCl and $CaCl_2$, solutions, loess had a decreasing negative zeta potential with increasing $Na^+\;and\;Ca^(+2)$ ion concentration and then didn't result in a charge reversal due to not occurring specific adsorption for $Na^+$ ion while resulted in a charge reversal due to occurring specific adsorption for $Ca^(+2)$ ion. In sea water, loess and RTO showed the similar zeta potential values of -112,1 and -9.2 mV, respectively and sea sand powder showed the highest zeta potential value of -25.7 mV in the clays. EDLs (electrical double-layers) of loess and RTO were extremely compressed due to high concentration of salts included in sea water, As a result, there didn't almost exist EDL repulsive force between loess and RTO approaching each other and then LVDW (London-yan der Waals) attractive force was always larger than EDL repulsive force to easily form a floe. Removal rates of RTO exponentially increased with increasing a loess concentration. The removal rates steeply increased until $800 mg/l$ of loess, and reached $100{\%}$ at 6,400 mg/l of loess. Removal rates of RTO exponentially increased with increasing a G-value. This indicated that mixing (i.e., collision among particles) was very important for a coagulation reaction. Loess showed the highest RTO removal rates in the clays.

  • PDF