• Title/Summary/Keyword: 반응 표면법

Search Result 1,687, Processing Time 0.037 seconds

Optimization of Medium for Carotenoids Production by Arthrobacter sp. PAMC 25486 Using Response Surface Methodology (반응표면분석법을 이용한 Arthrobacter sp. PAMC 25486의 카로티노이드 생산배지 최적화)

  • Kim, Hyun-Do;Choi, Jong-Il;Han, Se Jong
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.834-839
    • /
    • 2014
  • This study was conducted to optimize the medium composition for carotenoid production in Arthrobacter sp. PAMC 25486 through response surface methodology (RSM). Using a Placket-Burman design, from which yeast extract, $MgSO_4$ and dextrose were identified as the significant factors affecting carotenoids production. RSM studies for carotenoids production by Arthrobacter sp. PAMC 25486 have been carried out for three parameters of yeast extract, $MgSO_4$ and dextrose concentrations. These significant factors were optimized by experiments and RSM, as 1 g/L yeast extract, 0.0879 g/L $MgSO_4$ and 1 g/L dextrose. The experimentally obtained concentration of carotenoid was 288 mg/L, and it became 2-fold increase on concentration before optimization.

Optimization of Medium for Protease Production by Enterobacteriaceae sp. PAMC 25617 by Response Surface Methodology (반응표면분석법을 통한 Enterobacteriaceae sp. PAMC 25617의 protease 생산배지 최적화)

  • Kim, Hyun-do;Yun, Chul-Won;Choi, Jong-il;Han, Se Jong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.524-529
    • /
    • 2015
  • This study was conducted to optimize the medium composition for cold-adaptive protease production of Enterobacteriaceae sp. by response surface methodology (RSM). Yeast extract, and TritonX-100 were identified as the significant factors affecting protease from one-factor-at-a-time method. RSM studies for optimizing protease production of Enterobacteriaceae sp. have been carried out for three parameters including yeast extract concentration, TritonX-100 concentration, and culture pH. These significant factors were optimized as 6.690 g/L yeast extract, 0.018 g/L Triton$^{TM}$ X-10, and pH 6.677. The experimentally obtained protease activity was 8.03 U /L, and it became 1.5-fold increase before optimization.

The Surface Morphology of ZnO Grown by Metal Organic Chemical Vapor Deposition for an Application of Solar Cell (태양전지응용을 위하여 MOCVD 방법으로 성장된 ZnO 박막의 기판온도에 따른 표면특성)

  • Kim, Do-Young;Kang, Hye-Min;Kim, Hyung-Jun
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.3
    • /
    • pp.177-183
    • /
    • 2010
  • We report on the deposition of ZnO films using a metal organic chemical vapor deposition (MOCVD) as a function of pushing pressure and kind of reactant such as oxygen gas and water A diethylzinc (DEZ) is supplied and controlled by Ar pushing pressure through bubbling system. Oxygen gas and water are used as reactant in order to form oxidation. We knew that the surface roughness is related in the process conditions such as reactant kind and DEZ flow rate. A substrate temperature has little role of surface roughness with $O_2$ reactant. However, $H_2O$ reactant makes it to increase over the 20 times. We could get the maximum roughness of 39.16 nm at the 90 sccm of DEZ Ar flow rate, the 8 Pa of $H_2O$ vapor pressure, and the $140^{\circ}C$ of substrate temperature. In this paper, we investigated the ZnO films for the application to the light absorption layer of solar cell layer.

Steel Probing in Concrete Using Steel Corrosion Surface Measurement Method Modeling (철근부식 표면측정법 모델링을 통한 콘크리트 내 철근 탐사)

  • Rhim, Hong-Chul;Ma, Hyang-Hwa;Lee, Suk-Yong;Lee, Kun-Woo;Oh, Jin-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.153-158
    • /
    • 2009
  • Using non-invasive surface measurement method, the corrosion state of steel embedded inside concrete can be measured by placing four electrodes on the surface of concrete. Modeling of such measurements can provide valuable information as how interfacial impedance between corroded steel and surrounding concrete results in measured impedance on the concrete surface. In this paper, the modeling of surface measurement technique is used for the determination of the sensitivity of the measurements with respect to steel bar size embedded inside concrete and cover thickness. Modeling results indicated that steel bar sizes varied from D10 to D35 could be identified. Concrete cover thickness changes from 0.02 m to 0.1 m was also distinguished using the modeling scheme. The results confirm this modeling technique is capable of determining steel bar sizes and cover thickness, as well as simulating corrosion responses.

Enzymatic Hydrolysis Optimization of a Snow Crab Processing By-product (홍게 가공부산물의 효소적 단백질 가수분해 최적화)

  • Jang, Jong-Tae;Seo, Won-Ho;Baek, Hyung-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.622-627
    • /
    • 2009
  • The objectives of this study were to evaluate a protease suitable for the enzymatic hydrolysis of a snow crab processing by-product (SPB) and to optimize the hydrolysis conditions using response surface methodology (RSM). The SPB was hydrolyzed at $50^{\circ}C$ and pH 7.0-7.2 to obtain various degree of hydrolysis (DH) using Flavourzyme at an enzyme/substrate (E/S) ratio of 3.0%. The reaction progress curve exhibited an initial fast reaction rate followed by a slowing of the rate. The DH was increased to 30% at 90 min with a final DH 32 to 36%. A central composite experimental design having three independent variables (reaction temperature, reaction time, and E/S ratio) with five levels was used to optimize the enzymatic hydrolysis conditions. Based on the DH data, the optimum reaction conditions for the enzymatic hydrolysis of the SPB were a temperature of $51.8^{\circ}C$, reaction time of 4 hr 45 min, and an E/S ratio of 3.8%. It was demonstrated that the enzymatic hydrolysate of SPB could be used as a flavoring agent or a source of precursors for the production of reaction flavors.

철 이온이 도입된 수산화인회석의 합성과 물성변화에 관한 연구

  • Jeong, Byeong-Hyeon;Gwon, Gi-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.285-285
    • /
    • 2013
  • 수산화인회석(Hydroxyapatite, HAP)은 인체 내 뼈와 치아의 주성분으로서 칼슘과 인산염으로 구성된 물질이다. 암모늄을 이용하여 pH를 조절함으로서 hexagonal 형태의 HAP를 수열합성법으로 합성하였다. XRD pattern을 통하여 수산화인회석의 결정구조를 확인하였으며, 전이금속 중의 하나인 Fe(III) 이온을 이온교환반응을 통하여 수산화인회석 표면에 도입하였다. ICP 측정을 통해 Fe 함량을 정량하였고 SEM과 TEM image를 통하여 크기와 형태를 관찰하였다.

  • PDF

Mono-layer Compositional Analysis of Surface of Mineral Grains by Time-of-Flight Secondary-Ion Mass Spectrometry (TOF-SIMS) (TOF-SIMS를 이용한 광물 표면의 단층조직 분석 연구)

  • Kong Bong Sung;Chryssoulis Stephen;Kim Joo Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.127-134
    • /
    • 2005
  • Although the bulk composition of materials is one of the major considerations in extractive metallurgy and environmental science, surface composition and topography control surface reactivity, and consequently play a major role in determining metallurgical phenomena and pollution by heavy metals and organics. An understanding of interaction mechanisms of different chemical species at the mineral surface in an aqueous media is very important in natural environment and metallurgical processing. X-ray photoelectron spectroscopy (XPS) has been used as an ex-situ analytical technique, but the material to be analyzed can be any size from $100\;{\mu}m$ up to about 1 cm. It can also measure mixed solids powders, but it is impossible to ascertain the original source of resulting x-ray signals where they were emitted from, since it radiates and scans the macro sample surface area. The study demonstrated the ability of TOF-SIMS to detect individual organic species on the surfaces of mineral particles from plant samples and showed that the TOF-SIMS techniques provides an excellent tool for establishing the surface compositions of mineral grains and relative concentrations of chemicals on mineral species.

이온소스법에 의한 DLC막의 제작 및 기계적 특성

  • Kim, Mi-Seon;Hong, Seong-Pil;Kim, Hyeon-Gu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.164-165
    • /
    • 2007
  • Si(중간층)/DLC(diamond-like carbon)막은 스퍼터와 이온소스(ion source)법에 의한 복합방식(hybrid method)을 이용하여 3mTorr의 반응가스 벤젠($C_6H_6$)분위기에서 Si wafer에 기판온도 $130^{\circ}C$로 180분간 증착하였다. 평가는 표면과 단면에 대해 주사전자현미경(scanning electron microscopy, SEM)과 투자전자현미경(trasmission electron microsope, TEM)으로 관찰하였다. 경도와 마찰계수는 나노인텐터(nanoindetor)와 마모시험기를 이용하였으며, 박막의 구조는 라만스펙트럼으로 분석하였다. 그 결과 박막의 두께는 약 $0.9{\mu}m$, 표면조도는 약 $0.34{\sim}1.64nm$로 평탄한 표면을 가지며 경도는 약 $35{\sim}37GPa$, 마찰계수는 약 $0.02{\sim}0.07$로 관찰되었다. 라만분광법과 전자회절패턴에 의해 IG/ID의 함량비는 $0.54{\sim}0.59$$sp^2$$sp^3$가 혼재된 전형적인 비정질 구조임을 확인하였다.

  • PDF

Effects of NaOH concentration on the formation of plasma electrolytic oxidation films on AZ31 Mg alloy in CO3 2- ion containing solution (탄산 이온이 포함된 수용액에서 AZ31 마그네슘 합금의 플라즈마 전해산화 피막 형성에 미치는 수산화나트륨 농도의 영향)

  • Kim, Ye-Jin;Mun, Seong-Mo;Sin, Heon-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.150.1-150.1
    • /
    • 2017
  • 구조용 합금 중 가장 우수한 비강도를 나타내는 마그네슘 및 마그네슘 합금은 최근 자동차, 항공, 기계 및 전자산업 등 다양한 산업분야에서 이용되고 있다. 하지만 마그네슘 합금은 반응성이 매우 커서 쉽게 부식되는 단점이 있다. 따라서 최근 내식성 향상을 위한 표면처리 기술에 대한 연구의 필요성이 증대되고 있으며, 그 중 플라즈마 전해산화법(Plasma electrolytic oxidation)은 양극산화반응을 이용하여 고내식성, 고경도의 산화피막을 금속 표면에 형성시키는 방법으로 많은 연구가 진행되고 있다. 본 연구에서는 탄산이온이 포함된 수용액에서 수산화나트륨의 농도가 AZ31 마그네슘 합금의 플라즈마전해산화 피막형성에 미치는 영향에 대해 알아보았다. 다양한 농도의 수산화나트륨 용액에서 DC 전류를 인가하여 플라즈마전해산화 피막을 형성하였다. 탄산 이온이 포함된 수용액에서 수산화나트륨의 농도가 높아질수록 플라즈마 전해산화 피막의 형성전압은 낮아지며, 초기 피막 형성전압 상승 속도 또한 빠르게 증가하며 피막 형성전압 등락의 폭은 감소하는 것으로 나타났다.

  • PDF

Optimization on the Stability of Coconut Oil in Water Emulsion Using Response Surface Methodology (반응표면분석법을 이용한 Coconut Oil 원료 O/W 유화액의 유화안정성 최적화)

  • Yoo, Bong-Ho;Zuo, Chengliang;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.530-535
    • /
    • 2019
  • In this study, an optimization for the emulsification process with coconut oil and sugar ester was performed in conjunction with the central composite design (CCD) model of response surface methodology (RSM). Response values for the CCD model were the viscosity of the emulsion, mean droplet size, and emulsion stability index (ESI) after 7days from the reaction. On the other hand, the emulsification time, emulsification rate, and amount of emulsifier were selected as quantitative factors. According to the result of CCD, optimum conditions for the emulsification were as follows; the emulsification time of 22.63 min, emulsification speed of 6,627.41 rpm, and amount of emulsifier of 2.29 wt.%. Under these conditions, the viscosity, mean droplet size, and emulsion stability index (ESI) after 7 days from reaction were estimated as 1,707.56 cP, 1877.05 nm, and 93.23%, respectively. The comprehensive satisfaction of the CCD was indicated as 0.8848 with an average error of $1.2{\pm}0.1%$ from the experiment compared to that of the theoretical one. Overall, a very low error rate could be obtained when the central composite model was applied to the optimized coconut oil to water emulsification.