• Title/Summary/Keyword: 반응 조건 최적화

Search Result 744, Processing Time 0.034 seconds

Physicochemical and sensory properties of non-alcoholic red wine produced using vacuum distillation (진공 증류 공정에 의해 제조된 무알코올 레드 와인의 이화학적 및 관능적 특성 분석)

  • Kim, Ye-Na;Kim, Sung-Soo;Yu, Hwan Hee;Kim, Tae-Wan
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.5
    • /
    • pp.593-600
    • /
    • 2021
  • In this study, the vacuum distillation process for producing non-alcoholic red wine was optimized via response surface methodology. As a result of optimizing the responses (alcohol content, yield) for independent variables (operating time, boiling point, and temperature difference), 1% alcohol content and 81.15% yield were obtained at an operating time of 24.5 min, boiling point of 65℃, and temperature difference of 8℃. To investigate the physicochemical and sensory properties, non-alcoholic wines with different boiling points (bp 25℃, bp 45℃, and bp 65℃) and a blended wine (4.2% of control wine added) were prepared. As the boiling point increased, the alcohol content decreased, and CI (color intensity) and Hue increased. Blended wine exhibited the highest value and bp 65℃ showed the lowest value in terms of sensory properties. In conclusion, distillation at a low boiling point and blending control wine could be used to prepare non-alcoholic wine with a high preference.

Preparation and Characterization of Reduced Iron by Using Wastes as Auxiliary Fuels (폐기물을 보조연료로 이용한 환원철 제조 및 환원거동 분석)

  • Je, Hyun-Mo;Kim, Kyoung-Seok;Chu, Yong-Sik;Roh, Dong-Kyu
    • Resources Recycling
    • /
    • v.28 no.1
    • /
    • pp.47-54
    • /
    • 2019
  • In this study, the wastes were used as fuels for direct reduction iron (DRI) production to reduce production cost and recycle the wastes. We examined the effects of wastes on the reduction behavior of DRI manufacture and the possibility of using wastes as auxiliary fuels. The proximate and Ultimate analysis were carried out to confirm the properties of wastes as fuels, and high-quality reduced irons were fabricated by using the waste as an auxiliary fuel. The metallization of reduced irons increased as the calorific value increase of auxiliary fuel. Especially, the reduced irons fabricated from the waste tires and vinyl plastics which had high heat energy and volatile matters showed higher metallization than the others. The high calorific value and volatility of waste were significant properties as fuel. The high quality DRI could be fabricated with wastes as auxiliary fuels through optimization of reaction conditions.

Optimization of β-Glucan Extraction Process from Rice Bran and Rice Germ Using Response Surface Methodology (미강과 배아로부터 β-glucan의 추출조건 최적화 및 기능성 생리활성)

  • Jeon, Ju-Yeong;Park, Ji-Hae;Kim, Se-Hwan;Choi, Yong-Hee
    • Food Engineering Progress
    • /
    • v.13 no.1
    • /
    • pp.8-15
    • /
    • 2009
  • This study was investigated on optimal conditions of the functional activities of ${\beta}$-glucan which was extracted from rice bran (RB) and rice germ (RG) using response surface methodology. The extraction temperature was varied in the $80-100^{\circ}C$, the extraction time between 2-10 min, and the ethanol concentration was in the interval of 30-70%. A central composite design was applied to investigate the effects of independent variables of extraction temperature ($X_1$), extraction time ($X_2$) and ethanol concentration ($X_3$) on dependent variables such as electron donating ability of RB ($Y_1$), electron donating ability of RG ($Y_2$), total phenolics of RB ($Y_3$), total phenolics of RG ($Y_4$), ${\beta}$-glucan contents of RB ($Y_5$) and ${\beta}$-glucan contents of RG ($Y_6$). As a result, the highest $Y_1$ level was 84.02% at $92.60^{\circ}C$, 2.75 min and 60.41% in saddle point. This value was affected by extraction temperature (P<0.05). The value of $Y_2$ was found to be the highest at $87.52^{\circ}C$, 2.23 min and 54.40% in saddle point. The highest $Y_3$ level was $98.56^{\circ}C$, 6.69 min and 40.26% in saddle point, and this extraction was greatly influenced by extraction temperature (P<0.01) and ethanol concentration (P<0.05). The value of $Y_4$ was found to be highest at $95.73^{\circ}C$, 9.19 min and 53.67% in minimum point. The value of $Y_5$ was found to be the highest at $96.23^{\circ}C$, 7.70 min and 63.69% in saddle point. The value of $Y_6$ was found to be highest at $87.82^{\circ}C$, 2.10 min and 50.03% in minimum point, and this extraction was greatly influenced by extraction time (P<0.01).

Optimization of Single-stage Mixed Refrigerant LNG Process Considering Inherent Explosion Risks (잠재적 폭발 위험성을 고려한 단단 혼합냉매 LNG 공정의 설계 변수 최적화)

  • Kim, Ik Hyun;Dan, Seungkyu;Cho, Seonghyun;Lee, Gibaek;Yoon, En Sup
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.467-474
    • /
    • 2014
  • Preliminary design in chemical process furnishes economic feasibility through calculation of both mass balance and energy balance and makes it possible to produce a desired product under the given conditions. Through this design stage, the process possesses unchangeable characteristics, since the materials, reactions, unit configuration, and operating conditions were determined. Unique characteristics could be very economic, but it also implies various potential risk factors as well. Therefore, it becomes extremely important to design process considering both economics and safety by integrating process simulation and quantitative risk analysis during preliminary design stage. The target of this study is LNG liquefaction process. By the simulation using Aspen HYSYS and quantitative risk analysis, the design variables of the process were determined in the way to minimize the inherent explosion risks and operating cost. Instead of the optimization tool of Aspen HYSYS, the optimization was performed by using stochastic optimization algorithm (Covariance Matrix Adaptation-Evolution Strategy, CMA-ES) which was implemented through automation between Aspen HYSYS and Matlab. The research obtained that the important variable to enhance inherent safety was the operation pressure of mixed refrigerant. The inherent risk was able to be reduced about 4~18% by increasing the operating cost about 0.5~10%. As the operating cost increases, the absolute value of risk was decreased as expected, but cost-effectiveness of risk reduction had decreased. Integration of process simulation and quantitative risk analysis made it possible to design inherently safe process, and it is expected to be useful in designing the less risky process since risk factors in the process can be numerically monitored during preliminary process design stage.

Selective determination of mercury (II) ion in aqueous solution by chemiluminescence method (화학발광법에 의한 수용액 중의 선택적 수은(II) 이온 정량)

  • Kim, Kyung-Min;Jang, Taek-Gyun;Kim, Young-Ho;Oh, Sang-Huyb;Lee, Sang-Hak
    • Analytical Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.243-248
    • /
    • 2011
  • A selective determination method of mercury (II) ion in aqueous solution by luminol-based chemiluminescence system (luminol CL system) has been developed. Determination of metal ions such as copper (II), iron (III), chromium (III) ion in solution by the luminol CL system using its catalytic role in the reaction of luminol and hydrogen peroxide has been reported by several groups. In this study, the catalytic activity of mercury (II) ion in the reaction of luminol and hydrogen peroxide was observed by the enhanced CL intensity of the luminol CL system. Based on this phenomenon, experimental conditions of the luminol CL system were investigated and optimized to determine mercury (II) ion in aqueous solution. While mercury (II) ion in mixed sample solution containing mercury (I) and (II) ions highly enhanced the CL intensity of the luminol CL system, the mercury (I) ion could not enhanced the CL intensity. Thus selective determination of the mercury (II) ions in a mixture containing mercury (I) and (II) ions could be achieved. Each concentration of mercury (I) and (II) ions in aqueous solution can be obtained from the results of the CL method that give the concentration of only mercury (II) ion and the inductively coupled plasma (ICP) method that give the total concentration of mercury ions. On the optimized conditions, the calibration curve of mercury (II) ion was linear over the range from $1.25{\times}10^{-5}$ to $2.50{\times}10^{-3}M$ with correlation coefficient of 0.991. The detection limit of mercury (II) ion in aqueous solution was calculated to be $1.25{\times}10^{-7}M$.

Optimization for Ammonia Decomposition over Ruthenium Alumina Catalyst Coated on Metallic Monolith Using Response Surface Methodology (반응표면분석법을 이용한 루테늄 알루미나 메탈모노리스 코팅촉매의 암모니아 분해 최적화)

  • Choi, Jae Hyung;Lee, Sung-Chan;Lee, Junhyeok;Kim, Gyeong-Min;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.218-226
    • /
    • 2022
  • As a result of the recent social transformation towards a hydrogen economy and carbon-neutrality, the demands for hydrogen energy have been increasing rapidly worldwide. As such, eco-friendly hydrogen production technologies that do not produce carbon dioxide (CO2) emissions are being focused on. Among them, ammonia (NH3) is an economical hydrogen carrier that can easily produce hydrogen (H2). In this study, Ru/Al2O3 catalyst coated onmetallic monolith for hydrogen production from ammonia was prepared by a dip-coating method using a catalyst slurry mixture composed of Ru/Al2O3 catalyst, inorganic binder (alumina sol) and organic binder (methyl cellulose). At the optimized 1:1:0.1 weight ratio of catalyst/inorganic binder/organic binder, the amount of catalyst coated on the metallic monolith after one cycle coating was about 61.6 g L-1. The uniform thickness (about 42 ㎛) and crystal structure of the catalyst coated on the metallic monolith surface were confirmed through scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. Also, a numerical optimization regression equation for NH3 conversion according to the independent variables of reaction temperature (400-600 ℃) and gas hourly space velocity (1,000-5,000 h-1) was calculated by response surface methodology (RSM). This model indicated a determination coefficient (R2) of 0.991 and had statistically significant predictors. This regression model could contribute to the commercial process design of hydrogen production by ammonia decomposition.

Characteristics and Sensory Optimization of Taro (Colocasia esculenta) under Different Aging Conditions for Food Application of Black Taro (흑토란의 식품재료화를 위한 숙성 조건에 따른 토란의 특성 및 관능 최적화)

  • Jeon, Yu-Ho;Lee, Ji-Won;Son, Yang-Ju;Hwang, In-Kyeong
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.133-141
    • /
    • 2016
  • The physicochemical properties, antioxidant capacities, and sensory optimization of taro (Colocasia esculenta) under different aging conditions were investigated to develop black taro. Black taro was processed in three steps (steaming: $95{\pm}3^{\circ}C$ for 1 h; aging: 85, 90, $95^{\circ}C$ for 20, 40, and 60 h; drying: $60^{\circ}C$ for 24 h) and ground into a powder for all experiments. Black taro showed an increased crude fiber content and browning index compared to raw taro. Calcium oxalate contents, reducing sugar contents, moisture contents, and lightness values were decreased during the processing of taro. Improvements in total polyphenol content and antioxidant activity (DPPH, ABTS, FRAP) were observed in the black taro samples aged at higher temperature. Response surface methodology was used for sensory optimization, and the optimum aging conditions with the highest acceptance values were found to be $88.73^{\circ}C$ for 39.50 h for taste, and $88.82^{\circ}C$ for 42.60 h for overall acceptance.

A Comparative Study of Various Fuel for Newly Optimized Onboard Fuel Processor System under the Simple Heat Exchanger Network (연료전지차량용 연료개질기에 대한 최적연료비교연구)

  • Jung, Ikhwan;Park, Chansaem;Park, Seongho;Na, Jonggeol;Han, Chonghun
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.720-726
    • /
    • 2014
  • PEM fuel cell vehicles have been getting much attraction due to a sort of highly clean and effective transportation. The onboard fuel processor, however, is inevitably required to supply the hydrogen by conversion from some fuels since there are not enough available hydrogen stations nearby. A lot of studies have been focused on analyses of ATR reactor under the assumption of thermo-neutral condition and those of the optimized process for the minimization of energy consumption using thermal efficiency as an objective function, which doesn't guarantee the maximum hydrogen production. In this study, the analysis of optimization for 100 kW PEMFC onboard fuel processor was conducted targeting various fuels such as gasoline, LPG, diesel using newly defined hydrogen efficiency and keeping simply synthesized heat exchanger network regardless of external utilities leading to compactness and integration. Optimal result of gasoline case shows 9.43% reduction compared to previous study, which shows the newly defined objective function leads to better performance than thermal efficiency in terms of hydrogen production. The sensitivity analysis was also done for hydrogen efficiency, heat recovery of each heat exchanger, and the cost of each fuel. Finally, LPG was estimated as the most economical fuel in Korean market.

Identifying Risk Management Locations for Synthetic Natural Gas Plant Using Pipe Stress Analysis and Finite Element Analysis (배관응력해석 및 유한요소해석에 의한 SNG플랜트의 리스크 관리 위치 선정)

  • Erten, Deniz Taygun;Yu, Jong Min;Yoon, Kee Bong;Kim, Ji Yoon
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.1-11
    • /
    • 2017
  • While they are becoming more viable, synthetic natural gas (SNG) plants, with their high temperatures and pressures, are still heavily dependent on advancements in the state-of-the-art technologies. However, most of the current work in the literature is focused on optimizing chemical processes and process variables, with little work being done on relevant mechanical damage and maintenance engineering. In this study, a combination of pipe system stress analysis and detailed local stress analysis was implemented to prioritize the inspection locations for main pipes of SNG plant in accordance to ASME B31.3. A pipe system stress analysis was conducted for pre-selecting critical locations by considering design condition and actual operating conditions such as heat-up and cool-down. Identified critical locations were further analyzed using a finite element method to locate specific high-stress points. Resultant stress values met ASME B31.3 code standards for the gasification reactor and lower transition piece (bend Y in Fig.1); however, it is recommended that the vertical displacement of bend Y be restricted more. The results presented here provide valuable information for future risk based maintenance inspection and further safe operation considerations.

Statistical Optimization of Culture Conditions for the Production of Aphicidal Metabolites of Beauveria bassiana Bb08 (Beauveria bassiana Bb08의 살충성 물질 생산을 위한 배양조건의 통계적 최적화)

  • Go, Eunsu;Lim, Younghoon;Jeong, Hyeongchul;Choi, Jaepil;Park, Inseo;Kim, Jeong Jun;Lee, Dong-Jin;Kim, Keun
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.4
    • /
    • pp.398-406
    • /
    • 2013
  • For the maximal production of aphicidal metabolites produced by the Beauveria bassiana Bb08, statistical methods such as the Box-Behnken experimental design and response surface methodology were used. The fungal culture filtrate was sprayed towards 3-star aphids and the mortality was examined. After the statistical analysis of the aphid mortality, the optimal culture conditions were found to be a culture temperature of $26.2^{\circ}C$, medium pH 5.9, flask shaking speed of 209.0 rpm, and culture time of 5.9 days. The expected mortality on days 4, 5, and 6 after spraying the filtrate on to the aphids were 76.8%, 84.9%, and 89.4%, respectively. All 4 factors of the culture conditions significantly affected the production of the aphicidal metabolites, and the order of significance was temperature, pH, culture time and shaking speed.