• Title/Summary/Keyword: 반응 동력학

Search Result 114, Processing Time 0.027 seconds

Catalyzed Transesterification Kinetics in Early Stage of Polycarbonate Melt Polymerization (폴리카보네이트 용융중합 초기의 촉매기반 에스터 교환반응 동력학)

  • Jung, Ju Yeon;Lee, Ji Mok;Hong, Sung Kwon;Lee, Jin Kuk;Jung, Hyun Min;Kim, Yong Seok
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.235-239
    • /
    • 2015
  • In this work, we evaluated catalytic activity of LiOH, $Cu(acac)_2$ and n-butyltin hydroxide oxide hydrate in the early stage of the melt transesterification of isosorbide and bisphenol A as diol monomers and diphenylcarbonate for the melt polymerizaiton of polycarbonate. $Cu(acac)_2$ proved to be the most active catalyst for homopolymerization process, while the catalytic activity of LiOH was higher than the others in case of melt copolymerization depending on the catalytic mechanism and chemical structure of catalyst. We suggested that evaluation of catalytic activity can be used for selection of catalyst system in bio-based copolymerization of polycarbonate.

A study on the treatment of soil contaminated by pentachlorophenol with hydrogen peroxide and hemoglobin catalytic reaction (과산화수소와 헤모글로빈 촉매에 의한 펜타클로로페놀(PCP) 오염토양 처리에 관한 연구)

  • 송주완;강구영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.315-319
    • /
    • 2000
  • 400ppm의 pentachlorophenol(PCP) 오염토양을 5$m\ell$ scintillation vial의 multi reactor와 1L 크기의 one reactor를 써서 Hydrogen peroxide와 Hemoglobin 촉매반응에 의해 PCP 분해정도를 조사하였다. 대부분 초기에 반응이 빠르게 진행되므로 time scale을 8시간 이내와 한달여기간동안 살펴보았다. 8시간동안의 PCP 분해정도는 일차함수로 동력학 계수가 -0.0233으로 나타났고, 이때 제거효율은 60.8%이고 one reactor의 경우 30일동안 80%의 제거효율을 보였다. PCP 회수율은 multi reactor의 경우 96.5($\pm$6.7)이고 one reactor(fan scale)의 경우 90.1%였다.

  • PDF

Studies on the Kinetics for the Formation Reaction $Ti_3AI$ by SHS (Self-propagating High-temperatuer Synthesis) Method (자체반응열 고온합성법에 의한 $Ti_3AI$ 생상반응의 동력학적 연구)

  • 전광식
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.6
    • /
    • pp.569-574
    • /
    • 1998
  • The thickness of flame zone reaction rate and apparent activation energy in the formation reaction of $Ti_3AI$ intermetallic compound were investigated using SHS method which sustains the reaction spontaneously and utilizes the heat generated by thye exothermic reaction itself. In this reaction the thickness of flame zone was 1.4 mm and the reaction rate was $0.4g/\textrm{cm}^2{\cdot}sec$. Also the apparent activation energy calculated using from the experimental data obtained by controlling the realtive green density was 40kJ/mol.

  • PDF

Characteristics of Equilibrium, Kinetics and Thermodynamics for Adsorption of Disperse Yellow 3 Dye by Activated Carbon (활성탄에 의한 Disperse Yellow 3 염료의 흡착에 있어서 평형, 동력학 및 열역학적 특성)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.182-189
    • /
    • 2021
  • The adsorption of disperse yellow 3 (DY 3) on granular activated carbon (GAC) was investigated for isothermal adsorption and kinetic and thermodynamic parameters by experimenting with initial concentration, contact time, temperature, and pH of the dye as adsorption parameters. In the pH change experiment, the adsorption percent of DY 3 on activated carbon was highest in the acidic region, pH 3 due to electrostatic attraction between the surface of the activated carbon with positive charge and the anion (OH-) of DY 3. The adsorption equilibrium data of DY 3 fit the Langmuir isothermal adsorption equation best, and it was found that activated carbon can effectively remove DY 3 from the calculated separation factor (RL). The heat of adsorption-related constant (B) from the Temkin equation did not exceed 20 J mol-1, indicating that it is a physical adsorption process. The pseudo second order kinetic model fits well within 10.72% of the error percent in the kinetic experiments. The plots for Weber and Morris intraparticle diffusion model were divided into two straight lines. The intraparticle diffusion rate was slow because the slope of the stage 2 (intraparticle diffusion) was smaller than that of stage 1 (boundary layer diffusion). Therefore, it was confirmed that the intraparticle diffusion was rate controlling step. The free energy change of the DY 3 adsorption by activated carbon showed negative values at 298 ~ 318 K. As the temperature increased, the spontaneity increased. The enthalpy change of the adsorption reaction of DY 3 by activated carbon was 0.65 kJ mol-1, which was an endothermic reaction, and the entropy change was 2.14 J mol-1 K-1.

Equilibrium Kinetics and Thermodynamic Parameters Studies for Eosin Yellow Adsorption by Activated Carbon (활성탄에 의한 Eosin Yellow의 흡착에 대한 평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong Jib
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3319-3326
    • /
    • 2014
  • Eosin yellow is used a dye and colorant but it is harmful toxic substance. In this paper, batch adsorption studies were carried out for equilibrium, kinetics and thermodynamic parameters for eosin yellow adsorption by activated carbon with varying the operating variables like pH, initial concentration, contact time. Equilibrium adsorption data were fitted into Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms. By estimated Langmuir constant value, $R_L$=0.067-0.083, and Freundlich constant value, $\frac{1}{n}=0.237-0.267$, this process could be employed as effective treatment for removal of eosin yellow. From calculated Temkin constant, value, B=1.868-2.855 J/mol, and Dubinin-Radushkevich constant, value, E=5.345-5.735 kJ/mol, this adsorption process is physical adsorption. From kinetic experiments, the adsorption process were found to confirm to the pseudo second order model with good correlation coefficient($r^2$=0.995-0.998). The mechanism of the adsorption process was determined two step like as boundary and intraparticle diffusion.

Fs-THz beam line electron accelerator of pulse modulator design and fabrication (펨토 초-테라헤르츠 빔 라인용 펄스 모듈레이터의 설계와 제작)

  • Son, Yoon-Kyoo;Kwon, Sei-Jin;Suh, Jae-Hak;Jang, Sung-Duck;Kang, Heung-Sik;Lee, Kyung-Tae;Ro, Sung-Chae
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1322-1323
    • /
    • 2008
  • 기존의 펨토 초 레이저를 이용하여 발생시킨 테라 헤르츠 광원의 한계를 극복하기 위하여 대용량의 가속기를 이용한 테라 헤르츠 광원의 발생에 관한 연구가 활발히 진행되고 있다. 포항방사광 가속기연구소에서도 펨토 초 테라 헤르츠 빔을 이용한 분광학적인 방법을 사용하여 단백질 접힘과 DNA-단백질 간 상호작용, 화학적, 생물학적인 반응 동력학 등에 관한 연구와 영상 기술개발 등을 할 계획을 가지고 펨토초 테라 헤르츠 빔 라인을 건설 중에 있다. 펨토 초-테라 헤르츠 빔 라인의 마이크로웨이브를 가속하는 장치에 사용되는 전원장치의 설계와 제작 및 시험과정을 외국기술에 의존하지 않고 순수 국내기술로 실현하였다. 본 논문에서는 펄스 모듈레이터의 설계와 실험결과를 보이고자 한다.

  • PDF

Analysis on Isotherm, Kinetic and Thermodynamic Properties for Adsorption of Acid Fuchsin Dye by Activated Carbon (활성탄에 의한 Acid Fuchsin 염료의 흡착에 대한 등온선, 동력학 및 열역학 특성치에 대한 해석)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.458-465
    • /
    • 2020
  • Isotherms, kinetics and thermodynamic properties for adsorption of acid fuchsin (AF) dye by activated carbon were carried out using variables such as dose of adsorbent, pH, initial concentration and contact time and temperature. The effect of pH on adsorption of AF showed a bathtub with high adsorption percentage in acidic (pH 8). Isothermal adsorption data were fitted to the Freundlich, Langmuir, and Dubinin-Radushkevich isotherm models. Freundlich isothem model showed the highest agreement and confirmed that the adsorption mechanism was multilayer adsorption. It was found that adsorption capacity increased with increasing temperature. Freundlich's separation factor showed that this adsorption process was an favorable treatment process. Estimated adsorption energy by Dubinin-Radushkevich isotherm model indicated that the adsorption of AF by activated carbon is a physical adsorption. Adsorption kinetics was found to follow the pseudo-second-order kinetic model. Surface diffusion at adsorption site was evaluated as a rate controlling step by the intraparticle diffusion model. Thermodynamic parameters such as activation energy, Gibbs free energy, enthalpy entropy and isosteric heat of adsorption were investigated. The activation energy and enthalpy change of the adsorption process were 21.19 kJ / mol and 23.05 kJ / mol, respectively. Gibbs free energy was found that the adsorption reaction became more spontaneously with increasing temperature. Positive entropy was indicated that this process was irreversible. The isosteric heat of adsorption was indicated physical adsorption in nature.

Study on Adsorption Equilibrium, Kinetic and Thermodynamic Parameters of Murexide by Activated Carbon (입상 활성탄에 의한 Murexide의 흡착 평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.56-62
    • /
    • 2019
  • The equilibrium, kinetic and thermodynamic parameters of adsorption of murexide by granular activated carbon were investigated. The experiment was carried out by batch experiment with the variables of the amount of the adsorbent, the initial concentration of the dye, the contact time and the temperature. The isothermal adsorption equilibrium was best applied to the Freundlich equation in the range of 293 ~ 313 K. From the separation factor (${\beta}$) of Freundlich equation, it was found that adsorption of murexide by granular activated carbon could be the appropriate treatment method. The adsorption energy (E) obtained from the Dubinin- Radushkevich equation shows that the adsorption process is a physical adsorption process. From the kinetic analysis of the adsorption process, pseudo second order model is more consistent than pseudo first order model. It was found that the adsorption process proceeded to a spontaneous process and an endothermic process through Gibbs free energy change ($-0.1096{\sim}-10.5348kJ\;mol^{-1}$) and enthalpy change ($+151.29kJ\;mol^{-1}$). In addition, since the Gibbs free energy change decreased with increasing temperature, adsorption reaction of murexide by granular activated carbon increased spontaneously with increasing temperature. The entropy change ($147.62J\;mol^{-1}\;K^{-1}$) represented the increasing of randomness at the solid-solution interface during the adsorption reaction of murexide by activated carbon.

Estimation of Kinetic Parameters of Nonenzymatic Browning Reaction Using Equivalent Time at Reference Temperarture with Linearly Increasing Temperature Profile (정속가열(定速加熱)조건에서 표준온도상당시간(相當時間)을 이용한 비효소적 갈색화 반응의 동력학 파라미터 추정(推定))

  • Cho, Hyung-Yong;Kwon, Yun-Joong;Kim, In-Kyu;Pyun, Yu-Ruamg
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.178-184
    • /
    • 1993
  • The procedure using equivalent time at reference temperature has been assessed for the estimation of kinetic parameters with experimental data. Kinetic studies of nonenzymatic browning reaction in model and food system were carried out with linearly increasing temperature method. These kinetic parameters, n, $k_{ref}$ and $E_a$ of the systems were evaluated from original data in one step by nonlinear least square regression. The one step procedure yielded efficiently accurate parameter estimation. Computer simulated data with the kinetic models were well consistent with experimental data (average correlation coefficient=0.96).

  • PDF

Study on Adsorption Kinetic Characteristics of Propineb Pesticide on Activated Carbon (활성탄에 대한 프로피네브 농약의 흡착동력학적 특성 연구)

  • Lee, Jong-Jib;Cho, Jung-Ho;Kim, Heung-Tae
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.346-352
    • /
    • 2011
  • The adsorption characteristics of propineb pesticide onto activated carbon has been investigated for the adsorption in aqueous solution with respect to initial concentration, contact time and temperature in batch experiment. The Langmuir and Freundlich adsorption models were applied to described the equilibrium isotherms and isotherm constants were also determined. The Freundlich model agrees with experimental data well. slope of isotherm line indicate that activated carbon could be employed as effective treatment for removal of propineb. The pseudo first order, pseudo second order kinetic models were use to describe the kinetic data and rate constants were evaluated. The adsorption process followed a pseudo second order model, and the adsorption rate constant($k_2$) decreased with increasing initial concentration of propineb. The activation energy, change of free energy, enthalpy, and entropy were also calculated to predict the nature adsorption. The estimated values for change of free energy were -7.28, -8.27 and -11.66 kJ/mol over activated carbon at 298, 308 and 318 K, respectively. The results indicated toward a spontaneous process. The positive value for change of enthalpy, 54.46 kJ/mol, found that the adsorption of propineb on activated carbon is an endothermic process.