Browse > Article
http://dx.doi.org/10.7317/pk.2015.39.2.235

Catalyzed Transesterification Kinetics in Early Stage of Polycarbonate Melt Polymerization  

Jung, Ju Yeon (Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT))
Lee, Ji Mok (Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT))
Hong, Sung Kwon (Department of Polymer Science and Engineering, Chungnam National University)
Lee, Jin Kuk (Lotte Chemical)
Jung, Hyun Min (Department of Applied Chemistry, Kumoh National Institute of Technology)
Kim, Yong Seok (Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT))
Publication Information
Polymer(Korea) / v.39, no.2, 2015 , pp. 235-239 More about this Journal
Abstract
In this work, we evaluated catalytic activity of LiOH, $Cu(acac)_2$ and n-butyltin hydroxide oxide hydrate in the early stage of the melt transesterification of isosorbide and bisphenol A as diol monomers and diphenylcarbonate for the melt polymerizaiton of polycarbonate. $Cu(acac)_2$ proved to be the most active catalyst for homopolymerization process, while the catalytic activity of LiOH was higher than the others in case of melt copolymerization depending on the catalytic mechanism and chemical structure of catalyst. We suggested that evaluation of catalytic activity can be used for selection of catalyst system in bio-based copolymerization of polycarbonate.
Keywords
polycarbonate; melt polymerization; transesterification; catalyst;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. N. Hersh and K. Y. Choi, J. Appl. Polym. Sci., 41, 1033 (1990).   DOI
2 Y. Kim and K. Y. Choi, J. Appl. Polym. Sci., 49, 747 (1993).   DOI   ScienceOn
3 V. N. Ignatov, V. Tartari, C. Carraro, R. Pippa, G. Nadali, C. Berti, and M. Fiorini, Macromol. Chem. Phys., 202, 1941 (2001).   DOI
4 S. Rana, J. J. Barlow, and K. L. Matta, Tetrahedron Lett., 22, 5007 (1981).   DOI   ScienceOn
5 R. C. Poller and S. P. Retout, J. Organomet. Chem., 173, c7 (1979).   DOI   ScienceOn
6 F. Pilati, P. Manaresi, B. Fortunato, A. Murari, and V. Paeealacqua, Polymer, 22, 799 (1981).   DOI   ScienceOn
7 J. Otera, N. Dan-oh, and H. Nozaki, J. Org. Chem., 56, 5307 (1991).   DOI
8 M. Kubota, T. Yamamoto, and A. Yamamoto, Bull. Chem. Soc. Jpn., 52, 146 (1979).   DOI
9 B. K. Jang and C. A. Wilkie, Polym. Degrad. Stabil., 86, 419 (2004).   DOI   ScienceOn
10 B. A. J. Noordover, D. Haveman, R. Duchateau, R. A. T. M. van Benthem, and C. E. Koning, J. Appl. Polym. Sci., 121, 1450 (2011).   DOI   ScienceOn
11 M. Udea, Polym. Eng. Sci., 44, 1877 (2004).   DOI   ScienceOn
12 A. M. Nelson and T. E. Long, Polym. Int., 61, 1485 (2012).   DOI   ScienceOn
13 F. Fenouillot, A. Rousseau, G. Colomines, R. S. Loupe, and J. P. Pascault, Prog. Polym. Sci., 35, 578 (2010).   DOI   ScienceOn
14 Q. Li, W. Zhu, C. Li, G. Guan, D. Zhang, Y. Xiao, and L. Zheng, J. Polym. Sci., 51, 1387 (2013).   DOI   ScienceOn
15 S. Chatti, G. Schwarz, and H. R. Kricheldorf, Macromolecules, 39, 9064 (2006).   DOI   ScienceOn
16 I. P. Losev, O. V. Smirnova, and Ya. V. Smurnova, Vysokomol. Soed., 5, 57 (1963).
17 E. Turska and A. M. Wrohbel, Polymer, 11, 408 (1970).   DOI   ScienceOn