DOI QR코드

DOI QR Code

Catalyzed Transesterification Kinetics in Early Stage of Polycarbonate Melt Polymerization

폴리카보네이트 용융중합 초기의 촉매기반 에스터 교환반응 동력학

  • Jung, Ju Yeon (Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Lee, Ji Mok (Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Hong, Sung Kwon (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Lee, Jin Kuk (Lotte Chemical) ;
  • Jung, Hyun Min (Department of Applied Chemistry, Kumoh National Institute of Technology) ;
  • Kim, Yong Seok (Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT))
  • Received : 2014.05.30
  • Accepted : 2014.10.20
  • Published : 2015.03.25

Abstract

In this work, we evaluated catalytic activity of LiOH, $Cu(acac)_2$ and n-butyltin hydroxide oxide hydrate in the early stage of the melt transesterification of isosorbide and bisphenol A as diol monomers and diphenylcarbonate for the melt polymerizaiton of polycarbonate. $Cu(acac)_2$ proved to be the most active catalyst for homopolymerization process, while the catalytic activity of LiOH was higher than the others in case of melt copolymerization depending on the catalytic mechanism and chemical structure of catalyst. We suggested that evaluation of catalytic activity can be used for selection of catalyst system in bio-based copolymerization of polycarbonate.

본 연구에서는 디올 단량체로서 바이오 유래 isosorbide 및 bisphenol A가 적용된 폴리카보네이트의 단일 및 공중합체를 얻기 위한 촉매로서 LiOH, $Cu(acac)_2$ 및 n-butyltin hydroxide oxide hydrate를 각각 적용하여 용융중합 초기 단계에서 에스터 교환반응의 동력학 분석을 실시하여 촉매활성도를 비교하였다. 단일 중합의 경우, $Cu(acac)_2$가 가장 큰 촉매활성도를 나타내었으나, 서로 다른 두 가지 디올 단량체가 적용된 용융 공중합의 경우에는 촉매의 적용 메커니즘 및 단량체의 화학구조에 의존하여 LiOH의 촉매활성이 가장 큼을 확인하였다. 이러한 연구결과는 최근 관심이 집중된 바이오 유래 친환경 폴리카보네이트용 촉매선정에 활용 가능함을 제시한다.

Keywords

Acknowledgement

Supported by : 산업통상자원부, 한국화학연구원

References

  1. B. K. Jang and C. A. Wilkie, Polym. Degrad. Stabil., 86, 419 (2004). https://doi.org/10.1016/j.polymdegradstab.2004.05.009
  2. B. A. J. Noordover, D. Haveman, R. Duchateau, R. A. T. M. van Benthem, and C. E. Koning, J. Appl. Polym. Sci., 121, 1450 (2011). https://doi.org/10.1002/app.33660
  3. M. Udea, Polym. Eng. Sci., 44, 1877 (2004). https://doi.org/10.1002/pen.20189
  4. A. M. Nelson and T. E. Long, Polym. Int., 61, 1485 (2012). https://doi.org/10.1002/pi.4323
  5. F. Fenouillot, A. Rousseau, G. Colomines, R. S. Loupe, and J. P. Pascault, Prog. Polym. Sci., 35, 578 (2010). https://doi.org/10.1016/j.progpolymsci.2009.10.001
  6. Q. Li, W. Zhu, C. Li, G. Guan, D. Zhang, Y. Xiao, and L. Zheng, J. Polym. Sci., 51, 1387 (2013). https://doi.org/10.1002/pola.26507
  7. S. Chatti, G. Schwarz, and H. R. Kricheldorf, Macromolecules, 39, 9064 (2006). https://doi.org/10.1021/ma0606051
  8. I. P. Losev, O. V. Smirnova, and Ya. V. Smurnova, Vysokomol. Soed., 5, 57 (1963).
  9. E. Turska and A. M. Wrohbel, Polymer, 11, 408 (1970). https://doi.org/10.1016/0032-3861(70)90002-9
  10. S. N. Hersh and K. Y. Choi, J. Appl. Polym. Sci., 41, 1033 (1990). https://doi.org/10.1002/app.1990.070410514
  11. Y. Kim and K. Y. Choi, J. Appl. Polym. Sci., 49, 747 (1993). https://doi.org/10.1002/app.1993.070490501
  12. V. N. Ignatov, V. Tartari, C. Carraro, R. Pippa, G. Nadali, C. Berti, and M. Fiorini, Macromol. Chem. Phys., 202, 1941 (2001). https://doi.org/10.1002/1521-3935(20010601)202:9<1941::AID-MACP1941>3.0.CO;2-Q
  13. S. Rana, J. J. Barlow, and K. L. Matta, Tetrahedron Lett., 22, 5007 (1981). https://doi.org/10.1016/S0040-4039(01)92405-0
  14. R. C. Poller and S. P. Retout, J. Organomet. Chem., 173, c7 (1979). https://doi.org/10.1016/S0022-328X(00)84794-4
  15. F. Pilati, P. Manaresi, B. Fortunato, A. Murari, and V. Paeealacqua, Polymer, 22, 799 (1981). https://doi.org/10.1016/0032-3861(81)90018-5
  16. J. Otera, N. Dan-oh, and H. Nozaki, J. Org. Chem., 56, 5307 (1991). https://doi.org/10.1021/jo00018a019
  17. M. Kubota, T. Yamamoto, and A. Yamamoto, Bull. Chem. Soc. Jpn., 52, 146 (1979). https://doi.org/10.1246/bcsj.52.146