• Title/Summary/Keyword: 반응율

Search Result 5,075, Processing Time 0.039 seconds

Growth and Flower Bud Induction in Strawberry 'Sulhyang' Runner Plant as Affected by Exogenous Application of Benzyladenine, Gibberellic Acid, and Salicylic Acid (벤질아데닌, 지베렐린산, 살리실산이 '설향' 딸기묘의 생장과 화아 유도에 미치는 영향)

  • Thi, Luc The;Nguyen, Quan Hoang;Park, Yoo Gyeong;Jeong, Byoung Ryong
    • Journal of Bio-Environment Control
    • /
    • v.28 no.2
    • /
    • pp.178-184
    • /
    • 2019
  • Strawberry ($Fragaria{\times}ananassa$) is one of the most important and popular fruit crops in the world, and 'Sulhyang' is one of the principal cultivars cultivated in the Republic of Korea for the domestic market. The growth and flower induction in strawberry is the process which influences directly on fruit bearing and yield of this crop. In this study, effect of benzyladenine (BA), gibberellic acid ($GA_3$), and salicylic acid (SA) on growth and flower bud induction in strawberry 'Sulhyang' was investigated. The 3-week-old runner plants, grown in 21-cell propagation trays, were potted and cultivated in growth chambers with $25^{\circ}C/15^{\circ}C$ (day/night) temperatures, 70% relative humidity (RH), and light intensity of $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ photosynthetic photon flux density (PPFD) provided by white light emitting diodes (LEDs). The runner plants were treated with one of three concentrations, 0 (control), 100, and $200mg{\cdot}L^{-1}$ of BA, $GA_3$, or SA solution. The chemicals were sprayed two times on leaves of runner plants at an interval of two weeks. After 9 weeks the results showed that the application of all chemicals caused reduction of root length and chlorophyll (SPAD) content as compared to the control. The lowest chlorophyll (SPAD) content was recorded in plants treated with $GA_3$. However, the treatment of $200mg{\cdot}L^{-1}$ $GA_3$ promoted leaf area, leaf fresh weight, and plant fresh weight. The greatest flower induction (85%) and number of inflorescences (4.3 inflorescences per plant) were observed in the treatment of $200mg{\cdot}L^{-1}\;SA$, followed by $100mg{\cdot}L^{-1}\;SA$. Overall, results suggest that foliar application of $GA_3$ solution could accelerate plant growth, while foliar application of SA solution could induce hastened flowering. Further studies may be needed to find out the relationship between $GA_3$ and SA solutions treated in a combination, and the molecular mechanism involved in those responses observed.

Epidemiology and Clinical Characteristics of Parainfluenza Virus Type 4 in Korean Children: a Single Center Study, 2015-2017 (소아에서 파라인플루엔자 바이러스 4형의 역학 및 임상 양상에 대한 단일기관 연구: 2015-2017)

  • Sohn, Young Joo;Choi, Youn Young;Yun, Ki Wook;Choi, Eun Hwa;Lee, Hoan Jong
    • Pediatric Infection and Vaccine
    • /
    • v.25 no.3
    • /
    • pp.156-164
    • /
    • 2018
  • Purpose: We aimed to identify the epidemiology and the clinical characteristics of human parainfluenza virus type 4 (HPIV-4) infection compared to HPIVs 1-3 infections in Korean children. Methods: We reviewed medical records of children with HPIV infection who visited Seoul National University Children's Hospital from 2015 to 2017. Detection of respiratory viruses was performed using real time-polymerase chain reaction (rt-PCR), which could differentiate HPIVs 1-4. Diagnosis was classified as a febrile illness, upper respiratory tract infection (URI), croup, bronchiolitis, or pneumonia. The epidemiology, demographic features, and clinical characteristics among HPIV types were compared. The clinical data were analyzed only for the previously healthy children. Results: Of the 472 children diagnosed with HPIV infection, 108 (22.9%) were previously healthy: 24 (22.2%), 19 (17.6%), 39 (36.1%), and 26 (24.1%) in HPIV types 1, 2, 3, and 4, respectively. The median age of children with HPIV-4 infection was 11 (0-195) months: the proportion of children aged < 2 years and 2 to < 5 years were 65.4% and 19.2%, respectively. Clinical diagnoses of HPIV-4 infection were bronchiolitis (38.5%), pneumonia (30.8%), and URI (30.8%). Croup was the most prevalent in HPIV-2 (21.1%) and none in HPIV-4 infection (P=0.026). Hospital admission rates among HPIV types were not significantly different (P>0.05). Conclusions: We observed seasonal peak of HPIV-4 infection in 2015 and 2017. HPIV-4 was a common respiratory pathogen causing lower respiratory tract infection in hospitalized children.

The Nitrogen Behavior in the Continuous Inflow SBR according to Variations of Internal Recycling Rate (반송률 변화에 따른 연속 유입식 SBR 공정의 질소 거동)

  • Kim, Su-Yeon;Choi, Yong-Bum;Jo, You-Na;Han, Dong-Joon;Kwon, Jae-Hyouk
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.231-237
    • /
    • 2019
  • The BOD removal efficiency according to HRT of the continuous inflow SBR process was decreased from 92.1 ~ 96.0% at HRT 9 ~ 15 h to 86.9 ~ 90.7% at HRT 6 h, but a stable removal efficiency was shown up to HRT 6 h. The T-N removal rate was decreased to 80.1 ~ 87.9% at HRT 12 ~ 15 h, to 71.9 ~ 87.0% at HRT 9 h, and to 60.1 ~ 65.7% at HRT 6 h. As a result of the test of removing organic matter and nitrogen, the optimum HRT of the continuous inflow SBR reactor is determined as 9 h. The TCODcr removal efficiency was 88.4 ~ 96.0% and the TBOD removal efficiency was 92.1 ~ 98.1% as a result of examination of organic matter removal efficiency according to a change in the recycling rate (1 ~ 5Q) at HRT 9 h, suggesting that the a change in the recycling rate has a minimal effect on the removal of organic matter. The T-N removal efficiency was 70.3 ~ 80.4% at 1 ~ 2Q, 77.2 ~ 85.6% at 3Q and 61.5 ~ 80.8% at 4 ~ 5Q according to a change in the recycling rate. The TP removal efficiency was reduced to 75.0 ~ 84.6% at 1 ~ 4Q and to 63.3 ~ 72.4% at 5Q. This is presumably because the release and ingestion of phosphorus (P) by microorganisms is not performed smoothly at 5Q or more. Therefore, the optimum recycling rate for removing organic matter and nutrients was found to be 3Q.

A Study of the Anti-inflammatory Effect of Protein Derived from Tenebrio molitor Larvae (알칼리 법으로 추출한 갈색거저리 유충 단백질의 항염증 효능)

  • Seo, Minchul;Lee, Hwa Jeong;Lee, Joon Ha;Baek, Minhee;Kim, In-Woo;Kim, Sun Young;Hwang, Jae-Sam;Kim, Mi-Ae
    • Journal of Life Science
    • /
    • v.29 no.8
    • /
    • pp.854-860
    • /
    • 2019
  • This study investigated the optimum pH conditions for efficient extraction of protein from defatted Tenebrio molitor (TM) larvae. We examined the anti-inflammatory effect of protein derived from defatted TM larvae obtained by an alkaline extraction method. Six extraction pH values (7, 8, 9, 10, 11, and 12) and three precipitation pH values (2, 4, and 6) were used. The protein content, browning degree, and recovery yield of the protein obtained under each pH condition were determined. For efficient extraction of protein from defatted TM larvae, a combination of an extraction pH of 9 and precipitation pH of 4 resulted in a 32.4% recovery yield based on the extraction value and degree of browning. To determine whether the protein ameliorated inflammation by inhibition of macrophage activation by lipopolysaccharides (LPS), we measured nitric oxide (NO), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) expression in LPS-stimulated raw 264.7 macrophage cells. The protein markedly inhibited the production of NO without cytotoxicity and reduced the expression level of COX-2 and iNOS protein through the regulation of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B ($NF-{\kappa}B$) signaling. These results suggested that protein derived from TM larvae could have potential applications in anti-inflammatory therapeutic agents and protein supplements.

Evaluation of Manganese Removal from Acid Mine Drainage by Oxidation and Neutralization Method (산화법과 중화법을 이용한 산성광산배수 내 망간 제거 평가)

  • Kim, Bum-Jun;Ji, Won-Hyun;Ko, Myoung-Soo
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.687-694
    • /
    • 2020
  • Two oxidizing agents (KMnO4, H2O2), and one neutralizing agent (NaOH) were applied to evaluate Mn removal in mine drainage. A Mn2+ solution and artificial mine drainage were prepared to identify the Fe2+ influence on Mn2+ removal. The initial concentrations of Mn2+ and Fe2+ were 0.1 mM and 1.0 mM, respectively. The injection amount of oxidizing and neutralizing agents were set to ratios of 0.1, 0.67, 1.0, and 2.0 with respect to the Mn2+ mole concentration. KMnO4 exhibited a higher removal efficiency of Mn2+ than did H2O2 and NaOH, where approximately 90% of Mn2+ was removed by KMnO4. A black MnO2 was precipitated that indicated the oxidation of Mn2+ to Mn4+ after an oxidizing agent was added. In addition, MnO2 (pyrolusite) is a stable precipitate under pH-Eh conditions in the solution. However, relatively low removal ratios (6%) of Mn2+ were observed in the artificial mine drainage that included 1.0 mM of Fe2+. The rapid oxidation tendency of Fe2+ as compared to that of Mn2+ was determined to be the main reason for the low removal ratios of Mn2+. The oxidation of Fe2+ showed a decrease of Fe concentration in solution after injection of the oxidizing and neutralizing agents. In addition, Mn7+ of KMnO4 was reduced to Mn2+ by Fe2+ oxidation. Thus, the concentrations of Mn increased in artificial mine drainage. These results revealed that the oxidation method is more effective than the neutralization method for Mn removal in solution. It should also be mentioned that to achieve the Mn removal in mine drainage, Fe2+ removal must be conducted prior to Mn2+ oxidation.

Spectral Band Selection for Detecting Fire Blight Disease in Pear Trees by Narrowband Hyperspectral Imagery (초분광 이미지를 이용한 배나무 화상병에 대한 최적 분광 밴드 선정)

  • Kang, Ye-Seong;Park, Jun-Woo;Jang, Si-Hyeong;Song, Hye-Young;Kang, Kyung-Suk;Ryu, Chan-Seok;Kim, Seong-Heon;Jun, Sae-Rom;Kang, Tae-Hwan;Kim, Gul-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.1
    • /
    • pp.15-33
    • /
    • 2021
  • In this study, the possibility of discriminating Fire blight (FB) infection tested using the hyperspectral imagery. The reflectance of healthy and infected leaves and branches was acquired with 5 nm of full width at high maximum (FWHM) and then it was standardized to 10 nm, 25 nm, 50 nm, and 80 nm of FWHM. The standardized samples were divided into training and test sets at ratios of 7:3, 5:5 and 3:7 to find the optimal bands of FWHM by the decision tree analysis. Classification accuracy was evaluated using overall accuracy (OA) and kappa coefficient (KC). The hyperspectral reflectance of infected leaves and branches was significantly lower than those of healthy green, red-edge (RE) and near infrared (NIR) regions. The bands selected for the first node were generally 750 and 800 nm; these were used to identify the infection of leaves and branches, respectively. The accuracy of the classifier was higher in the 7:3 ratio. Four bands with 50 nm of FWHM (450, 650, 750, and 950 nm) might be reasonable because the difference in the recalculated accuracy between 8 bands with 10 nm of FWHM (440, 580, 640, 660, 680, 710, 730, and 740 nm) and 4 bands was only 1.8% for OA and 4.1% for KC, respectively. Finally, adding two bands (550 nm and 800 nm with 25 nm of FWHM) in four bands with 50 nm of FWHM have been proposed to improve the usability of multispectral image sensors with performing various roles in agriculture as well as detecting FB with other combinations of spectral bands.

Diagnostic Evaluation of the BioFire® Meningitis/Encephalitis Panel: A Pilot Study Including Febrile Infants Younger than 90 Days (BioFire® Meningitis/Encephalitis Panel의 진단적 유용성 평가: 90일 미만 발열영아에서의 예비 연구)

  • Kim, Kyung Min;Park, Ji Young;Park, Kyoung Un;Sohn, Young Joo;Choi, Youn Young;Han, Mi Seon;Choi, Eun Hwa
    • Pediatric Infection and Vaccine
    • /
    • v.28 no.2
    • /
    • pp.92-100
    • /
    • 2021
  • Purpose: Rapid detection of etiologic organisms is crucial for initiating appropriate therapy in patients with central nervous system (CNS) infection. This study aimed to evaluate the diagnostic value of the BioFire® Meningitis/Encephalitis (ME) panel in detecting etiologic organisms in cerebrospinal fluid (CSF) samples from febrile infants. Methods: CSF samples from infants aged <90 days who were evaluated for fever were collected between January 2016 and July 2019 at the Seoul National University Children's Hospital. We performed BioFire® ME panel testing of CSF samples that had been used for CSF analysis and conventional tests (bacterial culture, Xpert® enterovirus assay, and herpes simplex virus-1 and -2 polymerase chain reaction) and stored at -70℃ until further use. Results: In total, 72 (24 pathogen-identified and 48 pathogen-unidentified) CSF samples were included. Using BioFire® ME panel testing, 41 (85.4%) of the 48 pathogen-unidentified CSF samples yielded negative results and 22 (91.7%) of the 24 pathogen-identified CSF samples yielded the same results (enterovirus in 19, Streptococcus agalactiae in 2, and Streptococcus pneumoniae in 1) as those obtained using the conventional tests, thereby resulting in an overall agreement of 87.5% (63/72). Six of the 7 pathogen-unidentified samples were positive for human parechovirus (HPeV) via BioFire® ME panel testing. Conclusions: Compared with the currently available etiologic tests for CNS infection, BioFire® ME panel testing demonstrated a high agreement score for pathogen-identified samples and enabled HPeV detection in young infants. The clinical utility and cost-effectiveness of BioFire® ME panel testing in children must be evaluated for its wider application.

Feasibility Assessment on the Application of X-ray Computed Tomography on the Characterization of Bentonite under Hydration (벤토나이트 수화반응 특성화를 위한 X선 단층촬영 기술 적용성 평가)

  • Melvin B., Diaz;Gyung Won, Lee;Seohyeon, Yun;Kwang Yeom, Kim;Chang-soo, Lee;Minseop, Kim;Jin-Seop, Kim
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.491-501
    • /
    • 2022
  • Bentonite has been proposed as a buffer and backfill material for high-level radioactive waste repository. Under such repository environment conditions, bentonite is subjected to combined thermal, hydrological, mechanical, and chemical processes. This study evaluates the feasibility of applying X-ray CT technology on the characterization of bentonite under hydration conditions using a newly developed testing cell. The cylindrical cell is made of platic material, with a removable cap to place the sample, enabling to apply vertical pressure on the sample and to measure swelling pressure. The hydration test was carried out with a sample made of Gyeonju bentonite, with a dry density of 1.4 g/cm3, and a water content of 20%. The sample had a diameter of 27.5 mm and a height of 34 mm. During the test, water was injected at a constant pressure of 0.207 MPa, and lasted for 7 days. After one day of hydration, bentonite swelled and filled out the space inside the cell. Moreover, CT histograms showed how the hydration process induced an initial increase and later progressive decrease on the density of the sample. Detailed profiles of the mean CT value, CT standard deviation, and CT gradient provided more details on the hydration process of the sample and showed how the bottom and top regions exhibited a decrease on density while the middle region showed an increase, especially during the first two days of hydration. Later, the differences in CT values with respect to the initial state decreased, and were small at the end of testing. The formation and later reduction of cracks was also characterized through CT scanning.

Clinical Result of a Staged Reimplantation of Fungus Related Periprosthetic Joint Infection after Total Knee Arthroplasty (슬관절 전치환술 후 인공관절 주위 진균 감염의 임상적 결과)

  • Kim, Hyung Joo;Bae, Ki Cheor;Min, Kyung Keun;Choi, Hyeong Uk
    • Journal of the Korean Orthopaedic Association
    • /
    • v.54 no.1
    • /
    • pp.52-58
    • /
    • 2019
  • Purpose: Fungal periprosthetic joint infection (PJI) is a rare but devastating complication following total knee arthroplasty (TKA). On the other hand, a standardized procedure regarding an accurate treatment of this serious complication of knee arthroplasty is lacking. The clinical progress of staged reimplantation in patients who had fungus-related PJI after TKA was reviewed retrospectively. Materials and Methods: Ten patients who had a fungal related PJI after TKA between 2006 and 2017 using staged reimplantation surgery were reviewed. These patients were compared with 119 patients who had a PJI in the same period. The failure rate of infection control, intravenous antimicrobial using the period, and the clinical results were evaluated by comparing the range of motion and Korean knee score (KKS) between pre-staged reimplantation and the last follow-up. Results: In the fungal infection group, 7 out of 10 cases (70.0%) had failed in infection control using staged reimplantation and in the non-fungal group, 7 out of 119 cases (5.9%) had failed (p=0.04). In the non-fungal group, the mean duration of antibiotics was 6.2 weeks. In the fungus group, the mean duration of antibiotics was 15.3 weeks, which was 9.1 weeks longer (p<0.001). The range of motion of the knee was increased in the two groups (p=0.265). At the last follow-up, the KKS was 71.01 points in the non-fungal group and 61.3 points in the fungal group (p=0.012). Erythrocyte sedimentation rate and C-reactive protein (CRP) decreased in the two groups, but the CRP was significantly different in the two groups (p=0.007). Conclusion: The treatment of fungus-related PJIs using staged reimplantation showed uneven clinical progress and unsatisfactory clinical improvements compared to non-fungal PJI. Therefore, it is necessary to consider the use of an antifungal mixed cement spacer at resection arthroplasty and oral antifungal agent after reimplantation.

Metal Oxides Decorated Carbon Nanotube Freestanding Electrodes for High Performance of Lithium-sulfur Batteries (고성능 리튬-황 전지를 위한 금속산화물을 첨가한 탄소나노튜브 프리스탠딩 전극)

  • Yun Jung Shin;Hyeon Seo Jeong;Eun Mi Kim;Tae Yun Kim;Sang Mun Jeong
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.426-438
    • /
    • 2023
  • Lithium-sulfur batteries, recently attracting attention as next-generation batteries, have high energy density but are limited in application due to sulfur's insulating properties, shuttle phenomenon, and volume expansion. This study used an economical and simple vacuum filtration method to prepare a freestanding electrode without a binder and collector. Carbon nanotubes (CNTs) are used to improve the electrical conductivity of sulfur, where CNT also acts as both collector and conductor. In addition, metal oxides (MOx, M=Ni, Mg), which are easy to adsorb lithium polysulfide, are added to the CNT/S electrode to suppress the shuttle reaction in lithium-sulfur batteries, which is a result of suppressing the loss of active sulfur material due to the excellent adsorption of lithium polysulfide by metal oxides. The MOx@CNT/S electrode exhibited higher capacity characteristics and cycle stability than the CNT/S electrode without metal oxides. Among the MOx@CNT/S electrodes, the NiO@CNT/S electrode displayed a high discharge capacity of 780 mAh g-1 at 1 C and an extreme capacity decrease to 134 mAh g-1 after 200 cycles. Although the MgO@CNT/S electrode exhibited a low discharge rate of 544 mAh g-1 in the initial cycle, it showed good cycle stability with 90% of capacity retention up to 200 cycles. Further, to achieve high capacity and cycle stability, the Ni0.7Mg0.3O@CNT/S electrode, mixed with Ni:Mg in the ratio of 0.7:0.3, manifested an initial discharge rate of 755 mAh g-1 (1 C) and a capacity retention rate of more than 90% after 200 cycles. Therefore, applying binary metal oxides to CNT/S provides a freestanding electrode for developing economical and high-performance Li-S batteries, effectively improving lithium polysulfide's high capacity characteristics and dissolution.