Proceedings of the Acoustical Society of Korea Conference
/
spring
/
pp.36-39
/
1999
본 논문에서는 기존의 반연속 HMM과 신경망 알고리즘인 RBF(Radial Basis Function)를 혼합한 형태를 음성인식에 적용한다. 기존의 반연속 HMM은 학습 과정에서 모든 모델과 상태에서 공유되는 L개의 가우시안 확률 밀도들과 각가우시안 확률 밀도들의 가중치를 결정하는 흔합 밀도계수 의해 입력 음성의 특징을 확률적으로 모델링하는 혼합 확률을 얻고 또 Maximum likelihood와 Baum-Welch 알고리즘을 이용해 초기확률, 전이확률, 관측확률, 평균벡터 $\mu$, 공분산 행렬 $\Sigma$을 학습해 나간다. 그러나 제안한 RBF/반연속 HMM 혼합형태는 RBF의 변형된 방식을 첨가해 반연속 HMM 관측 파라미터를 RBF에 의해 결정함으로써 보단 분별릭 있는 화자독립 인식 시스템이 된다. 그래서 인식 실험결과 인식률에 있어서 기존의 반연속 HMM보다 향상된 인식률을 얻는다.
It is the hybrid structure of HMM and neural network(NN) that shows high recognition rate in speech recognition algorithms. And it is a method which has majorities of statistical model and neural network model respectively. In this study, we propose a new style of the hybrid structure of semi-continuous HMM(SCHMM) and radial basis function(RBF), which re-estimates weighting coefficients probability affecting observation probability after Baum-Welch estimation. The proposed method takes account of the similarity of basis Auction of RBF's hidden layer and SCHMM's probability density functions so as to discriminate speech signals sensibly through the learned and estimated weighting coefficients of RBF. As simulation results show that the recognition rates of the hybrid structure SCHMM/RBF are higher than those of SCHMM in unlearned speakers' recognition experiment, the proposed method has been proved to be one which has more sensible property in recognition than SCHMM.
본 논문에서는 잡음이 존재하는 환경에 강인한 것으로 알려져 있는 투영 방법을 우 도 측정에 가중 함수와 결합하여 사용하는 방법을 제안하였다. 반연속 HMM을 이용한 고립 단어의 인식 실험 결과, 제안한 방법이 실험에 사용된 잡음의 환경들에서 모두 좋은 성능을 나타내었다. 아울러 병렬 모델 결합 방법을 반연속 HMM에 적용하였는데 이는 코드북의 변 환반으로 쉽게 잡음의 특성을 반영할 수 있다. 가중 투영 우도 측정 방법을 병렬 모델 결합 방법에 적용한 경우에도 우수한 성능을 거둘 수 있었다.
The conventional lip-synch system has a two-step process, speech segmentation and recognition. However, the difficulty of speech segmentation procedure and the inaccuracy of training data set due to the segmentation lead to a significant Performance degradation in the system. To cope with that, the connected vowel recognition method using Head-Body-Tail (HBT) model is proposed. The HBT model which is appropriate for handling relatively small sized vocabulary tasks reflects co-articulation effect efficiently. Moreover the 7 vowels are merged into 3 classes having similar lip shape while the system is optimized by employing a class dependent SCHMM structure. Additionally in both end sides of each word which has large variations, 8 components Gaussian mixture model is directly used to improve the ability of representation. Though the proposed method reveals similar performance with respect to the CHMM based on the HBT structure. the number of parameters is reduced by 33.92%. This reduction makes it a computationally efficient method enabling real time operation.
In this paper, transition constrained Hidden Markov Model(HMM) in which the transition between states occur only within prescribed time slot is proposed and the performance is evaluated in the noisy environment. The transition constrained HMM can explicitly limit the state durations and accurately de scribe the temporal structure of speech signal simply and efficiently. The transition constrained HMM is not only superior to the conventional HMM but also require much less computation time. In order to evaluate the performance of the transition constrained HMM, speaker independent isolated word recognition experiments were conducted using semi-continuous HMM with the noisy speech for 20, 10, 0 dB SNR. Experiment results show that the proposed method is robust to the environmental noise. The 81.08% and 75.36% word recognition rates for conventional HMM was increased by 7.31% and 10.35%, respectively, by using transition constrained HMM when two kinds of noises are added with 10dB SNR.
Proceedings of the Acoustical Society of Korea Conference
/
1995.06a
/
pp.228-231
/
1995
반연속 HMM 음성인식 시스템의 화자 적응 성능 향상을 위해 코드북 변환 알고리즘을 제안하였다. 기존의 화자 적응 알고리즘으로는 새로운 화자의 적응 데이터 특징의 분포와 HMM 모수의 사전밀도를 함께 고려하는 베이시안 화자적응 알고리즘이 있다. 그러나 새로운 화자의 특징분포와 코드북 사전 밀도의 차이가 큰 경우 적응 데이터와 코드북간의 잘못된 대응 관계를 얻을 수 있으며, 기준 코드북에 필요 이상으로 많은 코드워드가 존재하는 경우 적응된 코드북에도 불필요한 코드워드 들이 남아 인식 과정에 혼란을 줄 수 있다. 이 문제점을 해결하기 위하여 제안된 코드북 변환 알고리즘에서는 주파수 영역의 포만트 정보를 이용하였다. 화자 적응을 수행하기 앞서 코드북의 켑스트럼으로부터 포만트를 추출해 내고, 이들의 분포를 적응 화자의 포만트 분포와 일치되도록 변환시켜 주었다. 이 변환된 포만트들로부터 다시 켑스트럼을 구하여 변환된 코드북을 얻고 이를 화자 적응의 초기 코드북으로 사용하였다. 제안된 알고리즘을 이용하였을 경우 코드북과 적응 화자의 음성 간의 정확한 대응관계를 찾을 수 있었고, 불필요한 코드워드들이 인식 과정에서 사용되지 않도록 변환되어 인식률이 향상되는 것을 실험을 통해 확인하였다.
In case of spectral subtraction for noise robust speech recognition system, this method often makes loss of speech signal. In this study, we propose a method that variation and determination of Gaussian function at semi-continuous HMM(Hidden Markov Model) is made on the basis of SNR criteria function, in which SNR means signal to noise ratio between estimation noise and subtracted signal per frame. For proving effectiveness of this method, we show the estimation error to be related with the magnitude of estimated noise through signal waveform. For this reason, Gaussian function is varied and determined by SNR. When we test recognition rate by computer simulation under the noise environment of driving car over the speed of 80㎞/h, the proposed Gaussian decision method by SNR turns out to get more improved recognition rate compared with the frequency subtracted and non-subtracted cases.
Journal of the Korea Society of Computer and Information
/
v.5
no.2
/
pp.90-97
/
2000
This paper describes an speaker-adaptive speech recognition system which make a reliable recognition of speech signal for new speakers. In the Proposed method, an speech spectrum of new speaker is adapted to the reference speech spectrum by using Parameters of a 1st linear transformation network at the front of phoneme classification neural network. And the recognition system is based on semicontinuous HMM(hidden markov model) which use the multilayer perceptron as a fuzzy vector quantizer. The experiments on the isolated word recognition are performed to show the recognition rate of the recognition system. In the case of speaker adaptation recognition, the recognition rate show significant improvement for the unadapted recognition system.
In this paper, we proposed various speaker adaptation methods and studied the performance of these methods. Methods which were studied in this paper are MAPE(Maximum A Posteriori Probability Estimation), Linear Spectral Estimating, Multi-Layer Perceptron and ARTMAP. In order to evaluate the performance of these methods, we used Korean isolated digits as the experimental data, the hybrid speaker adaptation method, which unified MAPE, linear spectral estimating and output probability of SCHMM, showed the better recognition result than those which performed other methods. And the method using ARTMAP showed the similar result to above hybrid method.
Proceedings of the Acoustical Society of Korea Conference
/
spring
/
pp.32-35
/
1999
기존의 반연속 HMM의 파라미터들 중에서 평균 벡터와 분산 행렬은 Maximum Likelihood Estimation 방법을 사용하여 학습한다. 본 논문에서는 평균 벡터를 위하여 Fuzzy c-means(FCM) 알고리즘을 사용하였고 분산 행렬을 위하여 FCM 알고리즘의 평균 벡터를 적용, 변형한 새로운 함수를 사용하여 화자적응에 적용하였다. 이러한 평균 벡터와 분산 행렬의 추정 방법은 새로운 화자에 대한 적응 능력을 갖는다. 제안한 방법을 적용한 한국어 격리 단어에 대한 컴퓨터 모의 실험결과 새로운 화자에 대해 적응함을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.