• 제목/요약/키워드: 반연속 HMM

검색결과 15건 처리시간 0.02초

반연속 HMM과 RBF 혼합 시스템을 이용한 화자독립 음성인식에 관한 연구 (A Study on Speaker-Independent Speech Recognition Using a Hybrid System of Semi-Continuous HMM and RBF)

  • 문연주;전선도;강철호
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1999년도 학술발표대회 논문집 제18권 1호
    • /
    • pp.36-39
    • /
    • 1999
  • 본 논문에서는 기존의 반연속 HMM과 신경망 알고리즘인 RBF(Radial Basis Function)를 혼합한 형태를 음성인식에 적용한다. 기존의 반연속 HMM은 학습 과정에서 모든 모델과 상태에서 공유되는 L개의 가우시안 확률 밀도들과 각가우시안 확률 밀도들의 가중치를 결정하는 흔합 밀도계수 의해 입력 음성의 특징을 확률적으로 모델링하는 혼합 확률을 얻고 또 Maximum likelihood와 Baum-Welch 알고리즘을 이용해 초기확률, 전이확률, 관측확률, 평균벡터 $\mu$, 공분산 행렬 $\Sigma$을 학습해 나간다. 그러나 제안한 RBF/반연속 HMM 혼합형태는 RBF의 변형된 방식을 첨가해 반연속 HMM 관측 파라미터를 RBF에 의해 결정함으로써 보단 분별릭 있는 화자독립 인식 시스템이 된다. 그래서 인식 실험결과 인식률에 있어서 기존의 반연속 HMM보다 향상된 인식률을 얻는다.

  • PDF

화자 독립 음성 인식을 위한 반연속 HMM과 RBF의 혼합 구조에 관한 연구 (A Study on Hybrid Structure of Semi-Continuous HMM and RBF for Speaker Independent Speech Recognition)

  • 문연주;전선도;강철호
    • 한국음향학회지
    • /
    • 제18권8호
    • /
    • pp.94-99
    • /
    • 1999
  • 성 인식 알고리즘에서 높은 인식률을 보이는 방법은 hidden Markov mode1(HMM)과 신경망의 혼합 형태이다. 이것은 통계적인 모델과 신경망 모델의 장점을 혼용하는 방법이다. 본 연구에서 제안하는 인식 알고리듬은 반연속 HMM과 radial basis function(RBF)의 새로운 형태의 혼합 구조로써 반연속 HMM 파라미터 중에서 관측 확률을 결정하는 가중치(혼합확률밀도함수계수)확률을 Baum-Welch 추정 이후 RBF로로써 재 추정하는 인식 모델을 제안한다. 제안한 방법은 RBF의 은닉층(hidden layer)의 기본 함수(basis function)와 반연속 HMM의 확률 밀도 함수의 유사함을 고려한 것으로 RBF의 학습 및 추정된 가중치로써 보다 음성 파형을 분별력 있게 구분하고자 하는 것이다. 모의 실험 결과는 반연속 HM만을 사용 할 때 보다 제안한 반연속 HMM/RBF 혼합 구조가 비 학습 화자에 대한 인식률을 개선함으로써 단순히 반연속 HMM만을 사용하는 것 보다 훨씬 분별력이 높은 방법임을 보여준다.

  • PDF

가중 투영 우도 측정 및 병렬 모델 결합을 이용한 잡음 환경에서의 음성 인식 (Speech Recognition in the Noisy Environment using Weighted Projection-Based Likelihood Measure and Parallel Model Combination)

  • 신원호;양태영;김원구;윤대희;차일환
    • 한국음향학회지
    • /
    • 제17권1호
    • /
    • pp.49-54
    • /
    • 1998
  • 본 논문에서는 잡음이 존재하는 환경에 강인한 것으로 알려져 있는 투영 방법을 우 도 측정에 가중 함수와 결합하여 사용하는 방법을 제안하였다. 반연속 HMM을 이용한 고립 단어의 인식 실험 결과, 제안한 방법이 실험에 사용된 잡음의 환경들에서 모두 좋은 성능을 나타내었다. 아울러 병렬 모델 결합 방법을 반연속 HMM에 적용하였는데 이는 코드북의 변 환반으로 쉽게 잡음의 특성을 반영할 수 있다. 가중 투영 우도 측정 방법을 병렬 모델 결합 방법에 적용한 경우에도 우수한 성능을 거둘 수 있었다.

  • PDF

클래스 종속 반연속 HMM을 이용한 립싱크 시스템 최적화 (Lip-Synch System Optimization Using Class Dependent SCHMM)

  • 이성희;박준호;고한석
    • 한국음향학회지
    • /
    • 제25권7호
    • /
    • pp.312-318
    • /
    • 2006
  • 기존의 립싱크 시스템은 음소 분할 후, 각각의 음소를 인식하는 2단계의 과정을 거쳤다. 하지만, 정확한 음소 분할의 부재와 음성이 끊긴 분할 된 음소로 이루어진 훈련 데이터들은 시스템의 전체 성능을 크게 떨어뜨렸다. 이런 문제를 해결하기 위해 Head-Body-Tail (HBT) 모델을 이용한 단모음 연속어 인식 기술을 제안한다. 주로 소규모 어휘를 다루는데 적합한 HBT 모델은 Head 와 Tail 부분에 문맥 종속 정보를 포함하여 앞 뒤 문맥에 따른 조음효과를 최대한 반영한다. 또한, 7개의 단모음을 입모양이 비슷한 세 개의 클래스로 분류하여, 클래스에 종속적인 코드북 3개를 가진 반연속HMM (Hidden Markov Model)을 적용하여 시스템을 최적화하고, 변이 부분이 큰 단어의 처음과 끝은 연속HMM의 8 믹스쳐 가우시안 구조를 사용하여 모델링하였다. 제안한 방법은 HBT구조의 연속HW과 대등한 성능을 보이지만, 파라미터 수는 33.92% 감소하였다. 파라미터 감소는 계산 양을 줄여주므로, 시스템이 실시간으로 동작 가능하게 한다.

천이 제한 HMM을 이용한 잡음 환경에서의 음성 인식 (Speech Recognition in Noisy environment using Transition Constrained HMM)

  • 김원구;신원호;윤대희
    • 한국음향학회지
    • /
    • 제15권2호
    • /
    • pp.85-89
    • /
    • 1996
  • 본 논문에서는 상태간의 천이가 특정한 시간 구간에서만 발생하도록 하는 천이 제한(transition constrained) HMM를 제안하고 잡음 환경에서의 성능을 평가하였다. 천이 제한 HMM는 상태 지속을 제한하고 음성 신호의 시간적 변화를 단순하고 효과적으로 표현할 수 있다. 제안된 천이 제한 HMM은 기존 HMM 보다 성능이 우수할 뿐만아니라 계산량도 매우 감소한다. 제안된 방법의 성능을 평가하기 위하여 반연속(semi-continuous) HMM을 이용하여 잡음이 SNR 20, 10, 0 dB로 첨가된 음성에 화자독립 단독음 인식실험을 수행하였다. 실험 결과에서 제안된 방법은 잡음에 강인한 특성을 나타내었다. 두 가지 종류의 잡음을 SNR 10dB로 첨가하여 사용한 경우, 천이제한 HMM의 인식률은 기존 HMM의 단어 인식률 81.08%와 75.36%에 비하여 각각 7.31%와 10.35% 향상되었다.

  • PDF

화자 적응 성능 향상을 위한 코드북 설계 (On Codebook Fesign to Improve Speaker Adaptation)

  • 양태영
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1995년도 제12회 음성통신 및 신호처리 워크샵 논문집 (SCAS 12권 1호)
    • /
    • pp.228-231
    • /
    • 1995
  • 반연속 HMM 음성인식 시스템의 화자 적응 성능 향상을 위해 코드북 변환 알고리즘을 제안하였다. 기존의 화자 적응 알고리즘으로는 새로운 화자의 적응 데이터 특징의 분포와 HMM 모수의 사전밀도를 함께 고려하는 베이시안 화자적응 알고리즘이 있다. 그러나 새로운 화자의 특징분포와 코드북 사전 밀도의 차이가 큰 경우 적응 데이터와 코드북간의 잘못된 대응 관계를 얻을 수 있으며, 기준 코드북에 필요 이상으로 많은 코드워드가 존재하는 경우 적응된 코드북에도 불필요한 코드워드 들이 남아 인식 과정에 혼란을 줄 수 있다. 이 문제점을 해결하기 위하여 제안된 코드북 변환 알고리즘에서는 주파수 영역의 포만트 정보를 이용하였다. 화자 적응을 수행하기 앞서 코드북의 켑스트럼으로부터 포만트를 추출해 내고, 이들의 분포를 적응 화자의 포만트 분포와 일치되도록 변환시켜 주었다. 이 변환된 포만트들로부터 다시 켑스트럼을 구하여 변환된 코드북을 얻고 이를 화자 적응의 초기 코드북으로 사용하였다. 제안된 알고리즘을 이용하였을 경우 코드북과 적응 화자의 음성 간의 정확한 대응관계를 찾을 수 있었고, 불필요한 코드워드들이 인식 과정에서 사용되지 않도록 변환되어 인식률이 향상되는 것을 실험을 통해 확인하였다.

  • PDF

잡음에 강한 음성 인식에서 SNR 기준 함수를 사용한 가우시안 함수 변형 및 결정에 관한 연구 (A Study on Variation and Determination of Gaussian function Using SNR Criteria Function for Robust Speech Recognition)

  • 전선도;강철호
    • 한국음향학회지
    • /
    • 제18권7호
    • /
    • pp.112-117
    • /
    • 1999
  • 잡음에 강한 음성인식시스템을 위하여 주파수 차감법을 사용할 경우 음성 신호마저 차감하여 신호를 더욱 부식시키는 경우가 존재한다. 본 연구에서는 이러한 경우를 위해서 프레임 마다 추정 잡음과 차감 신호의 SNR(Signal to Noise Ratio) 함수로부터 반연속 HMM(Hidden Markov Model)의 가우시안 함수를 변형 및 결정하는 방법을 제안한다. 이 방법의 타당성을 위해 프레임마다 추정 잡음의 오류 정도가 추정 잡음의 크기와 관계함을 신호 파형 형태로써 보였으며, 이러한 이유에서 SNR을 기준으로 가우시안 함수를 변형 및 결정하게 된다. 실험에서 80㎞/h 이상의 속도로 달리는 차량 내에서 배경 잡음과 음성이 혼합되었을 때의 음성 인식율을 평가하였다. 그 결과 주파수 차감한 경우와 차감하지 않은 경우에 비해 본 논문에서 제안한 SNR에 의한 가우시안 결정 방법이 더욱 향상된 인식율을 보였다.

  • PDF

선형 변환망을 이용한 화자적응 음성인식 (Speaker Adaptation Using Linear Transformation Network in Speech Recognition)

  • 이기희
    • 한국컴퓨터정보학회논문지
    • /
    • 제5권2호
    • /
    • pp.90-97
    • /
    • 2000
  • 본 논문에서는 불특정 화자의 음성에 대해서도 신뢰성 있는 인식이 이루어지도록 하는 음성인식 시스템을 구현하기 위한 화자적응 음성인식 기법을 제안한다. 제안한 화자적응 기법에 의한 음성인식 시스템은 표준화자의 음성특징을 1차선형 변환 망에 의해 새로운 화자의 음성특징에 선형적으로 적응하여 인식하며. 그 구성은 다층퍼셉트론을 퍼지 벡터양자화기로 사용하는 반연속 HMM을 기반으로 한다 구현한 인식시스템은 그 성능을 확인하기 위해 고립단어 인식실험을 수행하였다. 그 결과, 화자적응 인식인 경우가 화자적응 수행하지 않은 시스템에 비해 인식률이 개선됨을 보였다.

  • PDF

화자 적응 방법들의 비교 (The Comparison of Speaker Adaptation Methods)

  • 황영수
    • 한국음향학회지
    • /
    • 제18권1호
    • /
    • pp.61-66
    • /
    • 1999
  • 본 논문은 화자 적응 방법 제안과 그 방법들의 성능을 검토한 것이다. 본 논문에서 제안 검토한 방법들은 최대사후확률추정(MAPE)방법, 음성 선형 특성을 이용한 방법, 다층 퍼셉트론(MLP)을 이용한 방법과 ARTMAP을 이용한 방법들이다. 각 방법들의 성능 평가를 위하여 한국어 숫자음으로 실험한 결과, 최대사후확률추정 방법과 반연속 HMM의 출력 확률적응, 음성 선형 특성 등 3방법을 결합한 방법이 가장 우수한 결과를 보였으며, 이와 비슷한 실험 결과를 ARTMAP을 이용한 화자 적응 방법에서 보였다.

  • PDF

화자적응 시스템의 성능향상을 위한 FCM 알고리즘에 대한 연구 (A Study on FCM Algorithm for the Performance Improvement of Speaker Adaptation System)

  • 방기덕;전선도;강철호
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1999년도 학술발표대회 논문집 제18권 1호
    • /
    • pp.32-35
    • /
    • 1999
  • 기존의 반연속 HMM의 파라미터들 중에서 평균 벡터와 분산 행렬은 Maximum Likelihood Estimation 방법을 사용하여 학습한다. 본 논문에서는 평균 벡터를 위하여 Fuzzy c-means(FCM) 알고리즘을 사용하였고 분산 행렬을 위하여 FCM 알고리즘의 평균 벡터를 적용, 변형한 새로운 함수를 사용하여 화자적응에 적용하였다. 이러한 평균 벡터와 분산 행렬의 추정 방법은 새로운 화자에 대한 적응 능력을 갖는다. 제안한 방법을 적용한 한국어 격리 단어에 대한 컴퓨터 모의 실험결과 새로운 화자에 대해 적응함을 확인하였다.

  • PDF