• Title/Summary/Keyword: 반암형 광상

Search Result 19, Processing Time 0.028 seconds

Major Molybdenum Mineralization and Igneous Activity, South Korea (남한의 주요 몰리브덴 광화작용과 화성활동)

  • Choi, Seon-Gyu;Koo, Min-Ho;Kang, Heung-Suk;Ahn, Yong-Hwan
    • Economic and Environmental Geology
    • /
    • v.44 no.2
    • /
    • pp.109-122
    • /
    • 2011
  • The major Mo deposits in South Korea were formed during the Jurassic Daebo orogeny, the Late Cretaceous and the Tertiary post-orogenic igneous activities, and are characterized by a variety of genetic types such as pegmatite, greisen, skarn, porphyry and vein types. The Jangsu mine is a pegmatite-style deposit which is genetically related to the Jurassic ilmenite-series two-mica granite with the Mo mineralization age of $159.6{\pm}4.5$ Ma. The Geumseong mine occurs as a skarn/porphyry-style deposit associated with highly fractionated granite. Its age of Mo mineralization within aplitic cupola is about 96.5~l07.5 Ma. The Yeonil mine is a porphyry-style deposit, and the Geumeum mine is a veinlet-style deposit along the fracture zone with their mineralization ages of $58.4{\pm}1.6$ and $54.4{\pm}1.2$ Ma, respectively. The contrasts in the style of Mo mineralization in Korea reflect the different environment of the related magmatism. The Jurassic mineralization, being related to deep-seated granitoids, occurs as a pegmatite-style deposit, whereas the Cretaceous one, being related to subvolcanic granitoids, occurs as skarn/porphyry/vein-type ore deposits. The Tertiary Mo mineralization has a close relationship with the igneous activities associated with the Tertiary basin formation along the east coast, Korean peninsular.

An Overview of Geoenvironmental Implications of Mineral Deposits in Korea (한반도 광상 성인유형에 따른 환경 특성)

  • 최선규;박상준;이평구;김창성
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.1-19
    • /
    • 2004
  • Metallic deposits in Korea have a variety of genetic types such as hydrothermal veins, skarns, hydrothermal replacement and alaskite deposits and so on. Geological, mineralogical and geochemical features including host rock, wall-rock alteration, ore and gangue mineralogy, mineral texture and secondary mineralogy related to weathering process control the environmental signatures of mining areas. The environmental signatures of metallic deposits closed from early 1970s to late 1990s in Korea show complicate geochemistry and mineralogy due to step weathering of primary and secondary minerals such as oxidation-precipitation-remobilization. The potentiality of low pH and high heavy metal Concentration s from acid mine drainage is great in base-metal deposits associated with polymetallic mineralization, breccia-pipe type and Cretaceous hydrothermal Au veins with the amount of pyrite whereas skam, hydrothermal replacement, hydrothermal Cu and Au-Ag vein deposits are in low contamination possibility. The geoenvironmental models reflecting the various geologic features closely relate to disuibution of sulfides and carbonates and their ratios and finally effect on characteristics of environmental signatures such as heavy metal species and their concentrations in acid mine drainage.

Re-evaluation of Genetic Environments of Zinc-lead Deposits to Predict Hidden Skarn Orebody (스카른 잠두 광체 예측을 위한 아연-연 광상 성인의 재검토)

  • Choi, Seon-Gyu;Choi, Bu-Kap;Ahn, Yong-Hwan;Kim, Tae-Hyeong
    • Economic and Environmental Geology
    • /
    • v.42 no.4
    • /
    • pp.301-314
    • /
    • 2009
  • The Taebaeksan mineralized province, which is the most important one in South Korea, is rich in zinc-lead-tungsten-iron-copper-molybdenum-silver-gold mineral resources and has a diversity of deposit styles. These deposits principally coexist in time and space with porphyry-related epigenetic deposit such as skarn, hydrothermal replacement, mesothermal vein, and Carlin-like deposits. The magmatic-hydrothermal systems in the Taebaek fold belt is genetically characterized by the Bulguksa subvolcanic rocks(ca. $110{\sim}50\;Ma$) related to northwestward subduction of the paleo-Pacific Plate. The most important zinc-lead deposits in the area are the Uljin, Yeonhwa II and Shinyemi skarn, the Janggun hydrothermal replacement, and the Yeonhwa I intermediate-mixed (skarn/hydrothermal replacement) ones. In the present study, we present a compilation of metal production and mineral assemblage of the zinc-lead deposits. The metal difference of deposit styles in the area indicates a cooling path from intermediate-sulfidation to low-sulfidation state in the polymetallic hydrothermal system, reflecting spatial proximity to a magmatic source.

The Present of State of the Metal and Gold Deposits, Indonesia (인도네시아의 금속광상과 금광상 분포현황)

  • 김인준;이재호;서정률;이사로;김유봉;이규호
    • Economic and Environmental Geology
    • /
    • v.37 no.3
    • /
    • pp.269-276
    • /
    • 2004
  • The Indonesian Archipelago is located in the southern tip of the Eurasian plate. The diverse subduction system of the Indonesia region records interactions between three megaplates (Eurasian, Indian-Australian, and Pacific plates) and many smaller plates. The geology of Indonesian Archipelago is characterized by many factors such as subduction zone complexes, magmatic arc rocks associated with plate tectonics, the arc granite and volcanic rocks, and the related metamorphic rocks. The base-metal deposits of Indonesia have a great effect on petrochemical character of parent rocks and geotectonic environments. The base-metal deposits can be classified into four types as hosted by felsic-intermediate intrusive rocks, hosted by ultramafic rocks, hosted by volcanic rocks, and hosted by sedimentary rocks. The gold deposits are divided into three types: epithermal gold deposits, porphyry copper associated gold deposits, and alluvial gold deposits. Especially, Indonesian island uc, with its numerous plates tectonic, has an high potential for epithermal gold deposits. Indonesia with many old and present subduction zones and sub-aerial calcalkaline volcanic rocks is a very promising country for epithermal gold mineralization.

The Optimal Resource Development for Analysing Data of Deposit Types' Ore Reserves of Oversea Metal Resource (해외 금속자원에 대한 광상유형별 자료 분석을 통한 효과적인 자원개발)

  • Yoo, Bong-Chul;Lee, Jong-Kil;Lee, Gil-Jae;Lee, Hyun-Koo
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.773-795
    • /
    • 2008
  • The major import minerals of South Korea are copper ore, lead-zinc ore, iron ore, manganese ore and molybdenum ore. Oversea resources development of South Korea have 92 projects in 14 nations of Asia, 29 projects in 10 nations of America and Europe, and 14 projects in 9 nations of Middle Asia and Africa. But, most projects of them are found in Australia, China, Mongolia and Indonesia. The most projects of the Australia, China and Indonesia are interested in coal and a little projects of them have manganese, iron, lead-zinc, nickel, copper, gold, molybdenum, rare earth elements and uranium. The most projects of the Mongolia are interested in gold and rare earth elements. Representative ore deposits models of metal resources are Orogenic lode deposits, Volcanogenic massive sulphide deposits, Porphyry deposits, Sedimentary exhalative deposits, Mississippi valley type deposits, Iron oxide copper-gold deposits and Magmatic nickel-copper-platinum group element deposits based on global distribution, reverses and grades of their deposits models. If oversea mineral resources will be examined the mineral reserves, mineral mine production and ore deposits models of nations and then survey and investigate of mineral resources, we may be maintained ore body of high grade at survey area and decrease the investment risk.

Predictive Exploration of the Cretaceous Major Mineral Deposits in Korea : Focusing on W-Mo Mineralization (한국 백악기 주요 금속광상의 예측 탐사 : W-Mo 광화작용을 중심으로)

  • Choi, Seon-Gyu;Kang, Jeonggeuk;Lee, Jong Hyun
    • Economic and Environmental Geology
    • /
    • v.52 no.5
    • /
    • pp.323-336
    • /
    • 2019
  • The Mesozoic activity on the Korean Peninsula is mainly represented by the Triassic post-collisional, Jurassic orogenic, and Cretaceous post-orogenic igneous activities. The diversity of mineralization by each geological period came from various geothermal systems derived from the geochemical characteristics of magma with different emplacement depth. The Cretaceous metallic mineralization has been carried out over a wide range of time periods from ca. 115 to 45 Ma (main stage; ca. 100 to 60 Ma) related to post-orogenic igneous activity, and spatial distribution patterns of most metal deposits are concentrated along small granitic stocks. The late Cretaceous metal deposits in the Gyeonggi and Yeongnam massifs are generally distributed along the boundary among the Gongju-Eumseong fault system and the Yeongdong-Gwangju fault system and the Gyeongsang Basin, most of them are in the form of a distal epithermal~mesothermal Au-Ag vein or a transitional mesothermal Zn-Pb-Cu vein. On the other hand, diverse metal commodities in the Taebaeg Basin, the Okcheon metamorphic belt and the Gyeongsang Basin are produced from various deposit types such as skarn, carbonate-replacement, vein, porphyry, breccia pipe, and Carlin type. In the late Cretaceous metallic mineralization, various mineral deposits and commodities were induced not only by the pathway of the hydrothermal solution, but also by the diversity of precipitation environment in the proximity difference of the granitic rocks. The diversity of these types of Cretaceous deposits is fundamentally dependent on the geochemical characteristics such as degree of differentiation and oxidation state of related igneous rocks, and ore-forming fluids generally exhibit the evolutionary characteristics of intermediate- to low-sulfur hydrothermal fluids.

Geology and Mineral Resources of Turkey (터키 지질 및 광물자원 현황)

  • Lee, Gill-Jae;Koh, Sang-Mo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.51-61
    • /
    • 2012
  • 터키는 알파인 조산대 내의 테티얀 광상대(Tethyan belt)에 위치한다. 이 광상대는 섭입과, 충돌, 열개 운동으로 형성되었고 후기 백악기에서 신생대 화성암류와 오피올라이트(ophiolite)와 관련된다. 터키 지표의 5.5%를 덮고 있는 변성지괴는 북동부의 스트란야(Strandja), 카쟉(Kazdag), 서부의 멘데레스(Menderes), 중부의 키르세히르(Kirsehir), 남동부의 비틀리스(Bitlis)와 포투르지(Poturge)에 분포한다(그림 3과 4). 비교적 연구가 많이 진행된 서부지역의 변성지괴 연구결과에 따르면 변성작용연대는 선캠브리아기에서 올리고세이다. 변성상은 녹색편암상과 각섬암상에서 에콜로자이트상과 백립암상에 이른다(Yigit, 2009). 상기 여러 지괴는 여러 번에 걸쳐 변성작용을 겪었다. 서부의 멘데레스 지괴는 다섯 개의 변성상을 보여주고 있으며, 두 번째 변성작용까지는 알파인 조산운동 이전의 시기이다. 다양한 지질과 지체구조는 터키의 다양한 광상의 부존 가능성을 가능케 한다. 주요자원인 금-동-몰리브덴 광상은 주로 후기 백악기에서 신생대의 화산호와 관련된 반암동과 천열수 광상이다. 동-연-아연 광상은 VMS 중 쿠로코와 사이프러스형 광상과 MVT 광상에 속한다. 알려진 크롬광상의 대부분은 포디폼광상이며 알파인-오피올라이트 암석과 관련된다.

Hidden Porphyry-Related Ore Potential of the Geumseong Mo Deposit and Its Genetic Environment (금성 몰리브데늄광상의 잠두 반암형 광체에 대한 부존가능성과 성인적 환경)

  • Choi, Seon-Gyu;Park, Jung-Woo;Seo, Ji-Eun;Kim, Chang-Seong;Shin, Jong-Ki;Kim, Nam-Hyuck;Yoo, In-Kol;Lee, Ji-Yun;Ahn, Yong-Hwan
    • Economic and Environmental Geology
    • /
    • v.40 no.1 s.182
    • /
    • pp.1-14
    • /
    • 2007
  • The Guemseong mine is located near the southern margin of the Jurassic Jecheon granitoids collectively with the Cambro-Ordovician mixed dolostone-limestone series of the Yeongweol Group, Choseon Supergroup. Here, two spatially distinct types of skarn formation have been observed. The upper transitional skarn is the calcic Mo skarn which has the mineral assemblage of $garnet+hedenbergite+epidote{\pm}wollastonite{\pm}magnetite{\pm}hematite{\pm}amphibole{\pm}chlorite{\pm}vesuvianite$ within the calcite marble. On the other hand, the lower proximal skarn occurs as a discordant magnesian Fe skarn at the contact of Mo-bearing aplitic cupolas with unidirectional solidification texture(UST) within the dolomitic marble. The magnesian Fe skarn has the mineral assemlage $olivine+diopside+magnetite+tremolite+serpentine+talc+chlorite{\pm}phlogopite$. The formation of two different types of skarn and ore mineralization in Geumseong mine have been attributed to multistage and complex metasomatic replacements that ultimately resulted in silicate-oxide-sulfide sequence of metasomatism. An early prograde stage with anhydrous skarn minerals such as olivine, clinopyroxene and/or garnet with magnetite, formed from high temperature (about $500^{\circ}\;to\;400^{\circ}C$) at an environmental condition of low $CO_2$ fugacity ($XCO_2<0.1$) and 0.5 kbar. The later retrograde stage with hydrous silicates such as amphibole, serpentine, phlogopite, epidote and chlorite with molybdenite or hematite, termed from relatively lower temperature (about $400^{\circ}\;to\;300^{\circ}C$).

The Origin and Evolution of the Mesozoic Ore-forming Fluids in South Korea: Their Genetic Implications (남한의 중생대 광화유체의 기원과 진화특성: 광상 성인과의 관계)

  • Choi, Seon-Gyu;Pak, Sang-Joon
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.517-535
    • /
    • 2007
  • Two distinctive Mesozoic hydrothermal systems occurred in South Korea: the Jurassic/Early Cretaceous(ca. $200{\sim}130$ Ma) deep-level ones during the Daebo orogeny and the Late Cretaceous/Tertiary(ca. $110{\sim}45$ Ma) shallow hydrothermal ones during the Bulgugsa event. The Mesozoic hydrothermal system and the metallic mineralization in the Korean Peninsula document a close spatial and temporal relationship with syn- to post-tectonic magmatism. The calculated ${\delta}^{18}O_{H2O}$ values of the ore-forming fluids from the Mesozoic metallic mineral deposits show limited range for the Jurassic ones but variable range for the Late Cretaceous ones. The orogenic mineral deposits were formed at relatively high temperatures and deep-crustal levels. The mineralizing fluids that were responsible for the formation of theses deposits are characterized by the reasonably homogeneous and similar ranges of ${\delta}^{18}O_{H2O}$ values. This implies that the ore-forming fluids were principally derived from spatially associated Jurassic granitoids and related pegmatite. On the contrary, the Late Cretaceous ferroalloy, base-metal and precious-metal deposits in the Taebaeksan, Okcheon and Gyeongsang basins occurred as vein, replacement, breccia-pipe, porphyry-style and skarn deposits. Diverse mineralization styles represent a spatial and temporal distinction between the proximal environment of subvolcanic activity and the distal to transitional condition derived from volcanic environments. The Cu(-Au) or Fe-Mo-W deposits are proximal to a magmatic source, whereas the polymetallic or the precious-metal deposits are more distal to transitional. On the basis of the overall ${\delta}^{18}O_{H2O}$ values of various ore deposits in these areas, it can be briefed that the ore fluids show very extensive oxygen isotope exchange with country rocks, though the ${\delta}D_{H2O}$ values are relatively homogeneous and similarly restricted.