Browse > Article
http://dx.doi.org/10.9719/EEG.2019.52.5.323

Predictive Exploration of the Cretaceous Major Mineral Deposits in Korea : Focusing on W-Mo Mineralization  

Choi, Seon-Gyu (Department of Earth and Environmental Sciences, Korea University)
Kang, Jeonggeuk (Department of Earth and Environmental Sciences, Korea University)
Lee, Jong Hyun (Department of Earth and Environmental Sciences, Korea University)
Publication Information
Economic and Environmental Geology / v.52, no.5, 2019 , pp. 323-336 More about this Journal
Abstract
The Mesozoic activity on the Korean Peninsula is mainly represented by the Triassic post-collisional, Jurassic orogenic, and Cretaceous post-orogenic igneous activities. The diversity of mineralization by each geological period came from various geothermal systems derived from the geochemical characteristics of magma with different emplacement depth. The Cretaceous metallic mineralization has been carried out over a wide range of time periods from ca. 115 to 45 Ma (main stage; ca. 100 to 60 Ma) related to post-orogenic igneous activity, and spatial distribution patterns of most metal deposits are concentrated along small granitic stocks. The late Cretaceous metal deposits in the Gyeonggi and Yeongnam massifs are generally distributed along the boundary among the Gongju-Eumseong fault system and the Yeongdong-Gwangju fault system and the Gyeongsang Basin, most of them are in the form of a distal epithermal~mesothermal Au-Ag vein or a transitional mesothermal Zn-Pb-Cu vein. On the other hand, diverse metal commodities in the Taebaeg Basin, the Okcheon metamorphic belt and the Gyeongsang Basin are produced from various deposit types such as skarn, carbonate-replacement, vein, porphyry, breccia pipe, and Carlin type. In the late Cretaceous metallic mineralization, various mineral deposits and commodities were induced not only by the pathway of the hydrothermal solution, but also by the diversity of precipitation environment in the proximity difference of the granitic rocks. The diversity of these types of Cretaceous deposits is fundamentally dependent on the geochemical characteristics such as degree of differentiation and oxidation state of related igneous rocks, and ore-forming fluids generally exhibit the evolutionary characteristics of intermediate- to low-sulfur hydrothermal fluids.
Keywords
Cretaceous; mineralization; metallogenic epoch; Hwanggangri; predictive exploration;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Lee, S.G., Shin, S.C., Kim, K.H., Lee, T.J., Koh, H.J. and Song, Y.S. (2010) Petrogenesis of three Cretaceous granites in the Okcheon metamorphic belt, South Korea: Geochemical and Nd-Sr-Pb isotopic constraints. Gondwana Research, v.17, p.87-101.   DOI
2 Cerny, P. and Ercit, T.S. (2005) The classification of granitic pegmatites revisited. Canadian Mineralogist, v.43, p.2005-2026.   DOI
3 Cheong, C.S., Kwon, S.T. and Sagong, H. (2002) Geochemical and Sr-Nd-Pb isotopic investigation of Triassic grnitoids and basement rocks in the northern Gyeongsang Basin, Korea: Implications for the young basement in the east Asian continental margin. Island Arc, v.11, p.25-44.   DOI
4 Choi, S.-G. and Pak, S.J. (2007) The origin and evolution of the Mesozoic ore-forming fluids in South Korea: Their genetic implications. Econ. Env. Geol., v.40, p.517-535.
5 Choi, S.-G., Kwon, S.-T., Lee, J.-H., So, C.S. and Pak, S.J. (2005a) Origin of Mesozoic gold deposits in South Korea. Island Arc, v.14, p.102-114.   DOI
6 Park, H.I., Chang, H.W. and Jin, M.S. (1988a) K-Ar ages of mineral deposits in the Taebaeg Mountain district. Jour. Korean Inst. Mining Geol., v.21, p.57-67.
7 Lee, S.Y., Choi, S.-G., So, C.S., Ryu, I.-C., Wee, S.-M. and Heo, C.-H. (2003) Base-metal mineralization in the Cretaceous Gyeongsang Basin and its genetic implications, Korea: the Haman-Gunbug-Goseong(-Changwon) and the Euiseong metallogenic provinces. Econ. Environ. Geol., v.36, p.257-268.
8 Maruyama, S., Isozaki, Y., Kimura, G. and Terabayashi, M. (1997) Paleo-geographic maps of the Japanese islands. plate tectonic synthesis from 750 Ma to the present. Island Arc. v.6, p.121-142.   DOI
9 Park, H.I. and Kang, S.J. (1988) Gold and silver mineralization of Samhyungje vein, the Mugeug mine. Jour. Korean Inst. Mining Geol., v.21, p.257-268.
10 Park, H.I., Chang, H.W. and Jin, M.S. (1988b) K-Ar ages of mineral deposits in the Gyeonggi massif. Jour. Korean Institute of Mining Geol., v.21, p.349-358.
11 Reedman, A.J., Fletcher, C.J.N., Evans, R.B., Workman, D.R., Yoon, K.S., Rhyu, H.S., Jeong, S.H. and Park, J.N. (1973) The geology of the Hwanggangri mining district, Republic of Korea. Anglo-Korean Mineral Exploration Group, 119p.
12 Sagong H., Kwon S.T. and Ree J.H. (2005) Mesozoic episodic magmatism in South Korea and its tectonic implication. Tectonics, v.24, p.1-18.
13 Seo, J., Choi, S.-G. and Oh, C.W. (2010) Petrology, geochemistry, and geochronology of the Post-collisional Triassic mangerite and syenite in the Gwangcheon area, Hongseong Belt, South Korea. Gondwana Research, v.18, p.479-496.   DOI
14 Shelton, K.L., Taylor, R.P. and So, C.S. (1987) Stable isotope studies of the Dae-Hwa Tungsten-Molybdenum mine, Republic of Korea: Evidence of progressive meteoric water interaction in a tungsten-bearing hydrothermal system. Econ. Geol., v.82, p.471-481.   DOI
15 Seo, J,, Choi, S.-G., Kim, D.W., Park, J.W. and Oh, C.W. (2015) A new genetic model for the Triassic Yangyang iron-oxide-apatite deposit, South Korea: Constraints from in situ U-Pb and trace element analyses of accessory minerals. Ore Geology Reviews, v.70, p.110-135.   DOI
16 Choi, S.-G., Ryu, I.-C., Pak, S.J., Wee, S.M., Kim, C.S. and Park, M.E. (2005b) Cretaceous epithermal gold-silver mineralization and geodynamic environment, Korea. Ore Geol. Review, v.26, p.115-135.   DOI
17 Choi, S.-G., Pak, S.J., Kim, C.S., Ryu, I.-C. and Wee, S.M. (2006a) The origin and evolution of mineralizing fluids in the Cretaceous Gyeongsang Basin, southeastern Korea. Jour. Geochem. Explor., v.89, p.61-64.   DOI
18 Choi, S.-G., Pak, S.J., Kim, S.W., Kim, C.S. and Oh, C.-W. (2006b) Mesozoic gold-silver mineralization in south Korea: Metallogenic provinces reestimated to the geodynamic setting. Econ. Env. Geol., v.39, p.567-581.
19 Choi, S.-G., Park, J.W., Seo, J., Kim, C.S., Shin, J.-K., Kim, N.H., Yoo, I.K. Lee, J.Y. and Ahn, Y.-H. (2007) Hidden porphyry-related ore potential of the Geumseong Mo deposit and its genetic environment. Econ. Env. Geol., v.40, p.1-14.
20 Seo, J., Choi, S.-G., Park, J.W., Whattam, S., Kim, D.W., Ryu, I.-C. and Oh, C.W. (2016) Geochemical and mineralogical characteristics of the Yonghwa phoscorite-carbonatite complex, South Korea, and genetic implications. Lithos, v.262, p.609-619.
21 Shimazaki, H., Shibata, K., Uchiumi, S., Lee, M.S. and Kaneda, H. (1987) K-Ar ages of some W-Mo deposits and their bearing on metallogeny of South Korea. Mining Geol., v.37, p.395-401.
22 Shin, Y.H., Yoo, B.C., Lim, M., Park, Y.-S. and Ko, I.S. (2014) Gravity exploration inferring the source granite of the NMC Moland mine, Jecheon, Chungbuk. Econ. Env. Geol., v.47, p.107-119.   DOI
23 So, C.S. and Shelton, K. L. (1983) A sulfur isotopic and fluid inclusion study of the Cu-W-bearing tourmaline breccia pipe, Ilkwang mine, Republic of Korea. Econ. Geol., v.78, p.326-332.   DOI
24 So, C.S. and Shelton, K.L. (1987) Stable isotope and fluid inclusion studies of gold-silver bearing hydrothermal vein deposits, Cheonan-Cheongyang-Nonsan mining district, Republic of Korea: Cheonan area. Econ. Geol., v.82, p.987-1000.   DOI
25 Uchida, E., Choi, S.-G., Baba, D. and Wakisaka, Y. (2012) Petrogenesis and solidification depth of the Jurassic Daebo and Cretaceous Bulguksa granitic rocks in south Korea. Resource Geol., v.62, p.281-295.   DOI
26 Cho, D.R. and Kwon, S.T. (1994) Hornblende geobarometry of the Mesozoic granitoids in South Korea and the evolution of the crustal thickness. Jour. Geol. Soc. Korea, v.30, p.41-61.
27 Choi, S.-G., Choi, B.K., Ahn, Y.H. and Kim, T.H. (2009a) Re-evaluation of Genetic environments of zinc-lead deposits to predict hidden skarn orebody. Econ. Env. Geol., v.42, p.301-314.
28 Choi, S.G., Rajesh, V.J., Seo, J., Park, J.W., Oh, C.W., Pak, S.J. and Kim, S.W. (2009b) Petrology, geochronology and tectonic implications of Mesozoic high Ba-Sr granites in the Haemi area, Hongseong Belt, South Korea. Island Arc, v.18, p.266-281.   DOI
29 Choi, S.-G., Koo, M.-H., Kang, H.-S. and Ahn, Y.H. (2011) Major molybdenum mineralization and igneous activity, south Korea. Econ. Env. Geol., v.44, p.109-122.   DOI
30 Chough, S.K., Kown, S.T., Ree, J.H. and Choi, D.K. (2000) Tectonic and sedimentary evolution of the Korea peninsula: a review and new view. Earth Sci. Rev. v.52, p.175-235.   DOI
31 Jin, M.S., Lee, Y.S. and Ishihara, S. (2001) Granitoids and their magnetic susceptibility in South Korea. Resource Geol. v.51, p.189-204.   DOI
32 Williams, I.S., Cho, D.L. and Kim, S.W. (2009) Geochronology, and geochemical and Nd-Sr isotopic characteristics, of Triassic plutonic rocks in the Gyeonggi Massif, south Korea: constraints on Triassic post-collisional magmatism. Lithos, v.107, p.239-256.   DOI
33 Yi, S.B., Oh, C.W., Lee, S.-Y., Choi, S.-G., Kim, T. and Yi, K. (2016) Triassic mafic and intermediate magmatism associated with continental collision between the North and South China Cratons in the Korean Peninsula. Lithos, v.246-247, p.149-164.   DOI
34 Yoo, B.C., Lee, H.K. and White, N.C. (2006) Gold-bearing mesothermal veins from the Gubong mine, Cheongyang gold distirict, Republic of Korea: Fluid inclusion and stable isotope studies. Econ. Geol., v.101, p.883-901.   DOI
35 Zhai, M.G., Zhang, Y.B., Zhang, X.H., Wu, F.Y., Peng, P., Li, Q.L., Hou, Q.L., Li, T.S. and Zhao, L. (2016) Renewed profile of the Mesozoic magmatism in Korean Peninsula: regional correlation and broader implication for cratonic destruction in the North China Craton. Sci. China Earth Sci., v.59, p.1-34.
36 Corbett, G.J. and Leach, T.M. (1998) Southwest Pacific Rim gold-copper systems: Structure, alteration and mineralization. Rev. in Econ. Geol., 6, 235p.
37 Einaudi, M.T., Meinert, L.D. and Newberry, R.J. (1981) Skarn deposits. Econ. Geol., 75th Anniversary Volume, p.317-391.
38 Einaudi, M.T., Hedenquist, J.W. and Inan, E.E. (2003) Sulfidation state of fluids in active and extinct hydrothemal syatems: Transitions from porphyry to epithermal environments. p.285-313. In: Simmons, S.F. and Graham, I, eds Volcanic, geothermal, and oreforming fluids: Rulers and witnesses of processes within the Earth. Special Pub. in Econ. Geol. v.10, 343p.
39 Hong, S.S. (2001) Implication for the emplacement depth of granites in the Yeongnam Massif, using the aluminum-in-hornblende barometry. Jour. Petro. Soc. Korea, v.10, p.36-55.
40 Hong, S.S. and Cho, D.R. (2003) Late mesozoic-Cenozoic tectonic evolution of Korea (3). KIGAM, KR-03-01, p.455-526.
41 Jwa, Y.J. (1998) Temporal, spatial and geochemical discriminations of granitoids in south Korea. Resource Geol., v.47, p.273-284.   DOI
42 Jwa, Y.-J. (2004) Possible source rocks of Mesozoicgranites in South Korea: implications for crustal evolution in NE Asia. Transactions of the Royal Society of Edinburgh, v.95, p.181-195.   DOI
43 Kang, J., Choi, S-G, Seo, J., Kim, S.-T. Kim, G., Lee, J. and Kim, C.S. (2018) Skarn evolution of a giant Sangdong W-Mo deposit, South Korea. 15th IAGOD, Argentina Salta, p.86-87.
44 Kim, G.B., Choi, S.-G., Seo, J., Kim, C.S., Kim, J. and Koo, M. (2017) Mineralogy, Geochemistry, and Evolution of the Mn-Fe Phosphate Minerals within the Pegmatite in Cheolwon, Gyeonggi Massif. Econ. Env. Geol., v.50, p.181-193.   DOI
45 Kim, S.W., Kwon, S., Koh, H.J., Yi, K., Jeong, Y.J. and Santosh, M. (2011) Geotectonic framework of Permo-Triassic magmatism within the Korean Peninsula. Gondwana Research, v.20, p.865-889.   DOI
46 Kim, N., Cheong, C.S., Yi, K., Jeong, Y.J. and Koh, S.M. (2016) Post-collisional carbonatite-hosted rare earth element mineralization in the Hongcheon area, central Gyeonggi massif, Korea: Ion microprobe monazite U-Th-Pb geochronology and Nd-Sr isotope geochemistry. Ore Geology Reviews, v.79, p.78-87.   DOI
47 Kim, O.J. (1971a) Study on the intrusion epochs of younger granite and their bearing orogenesis in South Korea. Jour. Korean Inst. Mining Geol., v.4, p.1-10.
48 Kim, O.J. (1971b) Metallogenic epochs and provinces of south Korea. Jour. Geol. Soc. Korea, v.7, p.37-59.
49 Lee, J.H., Choi, S.G., Kim, C.S. and Seo, J. (2018) The geochemistry of the Cretaceous granitoids suites associated with the tungsten polymetallic deposits in the Hwanggangri province, south Korea. 15th IAGOD, Argentina Salta, p.88-89.
50 Lee, J.H. (2019) The Characteristics of barren and W-Mo productive Jurassic and Cretaceous granitoids in the Hwanggangri district, South Korea. Unpub. M.S. Thesis, Korea University, p.1-139.
51 Lee, S.-G. Ahn, I., Asahara, Y., Tanaka, T. and Lee, S.R. (2019) Geochemical interpretation of magnesium and oxygen isotope systematics in granites with the REE tetrad effect. Geoscience Journal, v.22, p.697-710.   DOI